[Homogénéisation d'un pavage de Penrose]
On démontre un théorème d'homogénéisation pour des énergies qui suivent la géométrie d'un pavage apériodique de Penrose. Nos résultats, applicables à des géométries quasicristallines générales, sont obtenus en démontrant que les densités d'énergie correspondantes sont
A homogenization theorem is proved for energies which follow the geometry of an a-periodic Penrose tiling. The result is obtained by proving that the corresponding energy densities are
Accepté le :
Publié le :
Andrea Braides 1 ; Giuseppe Riey 2 ; Margherita Solci 3
@article{CRMATH_2009__347_11-12_697_0, author = {Andrea Braides and Giuseppe Riey and Margherita Solci}, title = {Homogenization of {Penrose} tilings}, journal = {Comptes Rendus. Math\'ematique}, pages = {697--700}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.019}, language = {en}, }
Andrea Braides; Giuseppe Riey; Margherita Solci. Homogenization of Penrose tilings. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 697-700. doi : 10.1016/j.crma.2009.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.019/
[1] Almost Periodic Functions, Dover, Cambridge, 1954
[2] A homogenization theorem for weakly almost periodic functionals, Rend. Accad. Naz. Sci. XL, Volume 104 (1986), pp. 261-281
[3] Γ-convergence for Beginners, Oxford University Press, Oxford, 2002
[4] A handbook of Γ-convergence (M. Chipot; P. Quittner, eds.), Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, Elsevier, 2006
[5] Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998
[6] An Introduction to Γ-convergence, Birkhauser, Boston, 1993
[7] Algebraic theory of Penrose's nonperiodic tilings of the plane, Proc. K. Ned. Akad. Wet. Ser. A, Volume 43 (1981), pp. 39-66
[8] Almost periodic functions and partial differential operators, Russ. Math. Surv., Volume 33 (1978), pp. 1-52
[9] Graphic representation and nomenclature of the four-dimensional crystal classes. IV. Irrational crypto-rotation planes of non-crystallographic orders, Acta Cryst. A, Volume 42 (1986), pp. 387-398
[10] Some generalized Penrose patterns from projections of n-dimensional lattices, Acta Cryst. A, Volume 44 (1988), pp. 105-112
- Second order regularity for solutions to anisotropic degenerate elliptic equations, Journal of Differential Equations, Volume 435 (2025), p. 113250 | DOI:10.1016/j.jde.2025.113250
- Macroscopic elasticity of the hat aperiodic tiling, Mechanics of Materials, Volume 193 (2024), p. 104988 | DOI:10.1016/j.mechmat.2024.104988
- Two-scale cut-and-projection convergence for quasiperiodic monotone operators, European Journal of Mechanics - A/Solids, Volume 100 (2023), p. 104796 | DOI:10.1016/j.euromechsol.2022.104796
- Homogenization of discrete thin structures, Nonlinear Analysis, Volume 231 (2023), p. 112951 | DOI:10.1016/j.na.2022.112951
- Mathematical aspects of quasicrystals, Rendiconti Lincei. Scienze Fisiche e Naturali, Volume 34 (2023) no. 3, p. 721 | DOI:10.1007/s12210-023-01176-y
- Bounded Wang tilings with integer programming and graph-based heuristics, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-31786-3
- Continuum limits of discrete isoperimetric problems and Wulff shapes in lattices and quasicrystal tilings, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 6 | DOI:10.1007/s00526-022-02318-0
- Homogenization of singular elliptic systems with nonlinear conditions on the interfaces, Journal of Elliptic and Parabolic Equations, Volume 6 (2020) no. 2, p. 633 | DOI:10.1007/s41808-020-00075-9
- , 2019 URSI International Symposium on Electromagnetic Theory (EMTS) (2019), p. 1 | DOI:10.23919/ursi-emts.2019.8931468
- Hopf Lemma and regularity results for quasilinear anisotropic elliptic equations, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 3 | DOI:10.1007/s00526-019-1528-x
- Mathegraphics, ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics, Volume 809 (2019), p. 1511 | DOI:10.1007/978-3-319-95588-9_134
- Equilibrium paths of Hencky pantographic beams in a three-point bending problem, Mathematics and Mechanics of Complex Systems, Volume 7 (2019) no. 4, p. 287 | DOI:10.2140/memocs.2019.7.287
- INTERFACIAL ENERGIES ON PENROSE LATTICES, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 05, p. 1193 | DOI:10.1142/s0218202511005295
Cité par 13 documents. Sources : Crossref
Commentaires - Politique