[Homogénéisation d'un pavage de Penrose]
On démontre un théorème d'homogénéisation pour des énergies qui suivent la géométrie d'un pavage apériodique de Penrose. Nos résultats, applicables à des géométries quasicristallines générales, sont obtenus en démontrant que les densités d'énergie correspondantes sont – et donc Besicovitch – quasi-périodiques, de sort que l'on peut appliquer les théorèmes d'homogénéisation de Braides, 1986.
A homogenization theorem is proved for energies which follow the geometry of an a-periodic Penrose tiling. The result is obtained by proving that the corresponding energy densities are -almost periodic and hence also Besicovitch almost periodic, so that existing general homogenization theorems can be applied (Braides, 1986). The method applies to general quasicrystalline geometries.
Accepté le :
Publié le :
Andrea Braides 1 ; Giuseppe Riey 2 ; Margherita Solci 3
@article{CRMATH_2009__347_11-12_697_0, author = {Andrea Braides and Giuseppe Riey and Margherita Solci}, title = {Homogenization of {Penrose} tilings}, journal = {Comptes Rendus. Math\'ematique}, pages = {697--700}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.019}, language = {en}, }
Andrea Braides; Giuseppe Riey; Margherita Solci. Homogenization of Penrose tilings. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 697-700. doi : 10.1016/j.crma.2009.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.019/
[1] Almost Periodic Functions, Dover, Cambridge, 1954
[2] A homogenization theorem for weakly almost periodic functionals, Rend. Accad. Naz. Sci. XL, Volume 104 (1986), pp. 261-281
[3] Γ-convergence for Beginners, Oxford University Press, Oxford, 2002
[4] A handbook of Γ-convergence (M. Chipot; P. Quittner, eds.), Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, Elsevier, 2006
[5] Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998
[6] An Introduction to Γ-convergence, Birkhauser, Boston, 1993
[7] Algebraic theory of Penrose's nonperiodic tilings of the plane, Proc. K. Ned. Akad. Wet. Ser. A, Volume 43 (1981), pp. 39-66
[8] Almost periodic functions and partial differential operators, Russ. Math. Surv., Volume 33 (1978), pp. 1-52
[9] Graphic representation and nomenclature of the four-dimensional crystal classes. IV. Irrational crypto-rotation planes of non-crystallographic orders, Acta Cryst. A, Volume 42 (1986), pp. 387-398
[10] Some generalized Penrose patterns from projections of n-dimensional lattices, Acta Cryst. A, Volume 44 (1988), pp. 105-112
Cité par Sources :
Commentaires - Politique