A homogenization theorem is proved for energies which follow the geometry of an a-periodic Penrose tiling. The result is obtained by proving that the corresponding energy densities are -almost periodic and hence also Besicovitch almost periodic, so that existing general homogenization theorems can be applied (Braides, 1986). The method applies to general quasicrystalline geometries.
On démontre un théorème d'homogénéisation pour des énergies qui suivent la géométrie d'un pavage apériodique de Penrose. Nos résultats, applicables à des géométries quasicristallines générales, sont obtenus en démontrant que les densités d'énergie correspondantes sont – et donc Besicovitch – quasi-périodiques, de sort que l'on peut appliquer les théorèmes d'homogénéisation de Braides, 1986.
Accepted:
Published online:
Andrea Braides 1; Giuseppe Riey 2; Margherita Solci 3
@article{CRMATH_2009__347_11-12_697_0, author = {Andrea Braides and Giuseppe Riey and Margherita Solci}, title = {Homogenization of {Penrose} tilings}, journal = {Comptes Rendus. Math\'ematique}, pages = {697--700}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.019}, language = {en}, }
Andrea Braides; Giuseppe Riey; Margherita Solci. Homogenization of Penrose tilings. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 697-700. doi : 10.1016/j.crma.2009.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.019/
[1] Almost Periodic Functions, Dover, Cambridge, 1954
[2] A homogenization theorem for weakly almost periodic functionals, Rend. Accad. Naz. Sci. XL, Volume 104 (1986), pp. 261-281
[3] Γ-convergence for Beginners, Oxford University Press, Oxford, 2002
[4] A handbook of Γ-convergence (M. Chipot; P. Quittner, eds.), Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, Elsevier, 2006
[5] Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998
[6] An Introduction to Γ-convergence, Birkhauser, Boston, 1993
[7] Algebraic theory of Penrose's nonperiodic tilings of the plane, Proc. K. Ned. Akad. Wet. Ser. A, Volume 43 (1981), pp. 39-66
[8] Almost periodic functions and partial differential operators, Russ. Math. Surv., Volume 33 (1978), pp. 1-52
[9] Graphic representation and nomenclature of the four-dimensional crystal classes. IV. Irrational crypto-rotation planes of non-crystallographic orders, Acta Cryst. A, Volume 42 (1986), pp. 387-398
[10] Some generalized Penrose patterns from projections of n-dimensional lattices, Acta Cryst. A, Volume 44 (1988), pp. 105-112
Cited by Sources:
Comments - Policy