[Application du calcul de Malliavin à l'estimation du paramètre de mémoire longue pour des processus non-gaussiens]
Nous servant des intégrales multiples de Wiener–Itô et du calcul de Malliavin, nous étudions la variation quadratique renormalisée d'un processus de Hermite général d'ordre q avec paramètre de mémoire longue . Nous appliquons nos résultats à la construction d'un estimateur fortement consistent pour H. Il est démontré que l'estimateur est asymptotiquement non-normal, et converge en moyenne de carrés, après normalisation, vers une variable aléatoire de Rosenblatt standard.
Using multiple Wiener–Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations of a general Hermite process of order q with long-memory (Hurst) parameter . We apply our results to the construction of a strongly consistent estimator for H. It is shown that the estimator is asymptotically non-normal, and converges in the mean-square, after normalization, to a standard Rosenblatt random variable.
Accepté le :
Publié le :
Alexandra Chronopoulou 1 ; Ciprian A. Tudor 2 ; Frederi G. Viens 1
@article{CRMATH_2009__347_11-12_663_0, author = {Alexandra Chronopoulou and Ciprian A. Tudor and Frederi G. Viens}, title = {Application of {Malliavin} calculus to long-memory parameter estimation for {non-Gaussian} processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {663--666}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.026}, language = {en}, }
TY - JOUR AU - Alexandra Chronopoulou AU - Ciprian A. Tudor AU - Frederi G. Viens TI - Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes JO - Comptes Rendus. Mathématique PY - 2009 SP - 663 EP - 666 VL - 347 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2009.03.026 LA - en ID - CRMATH_2009__347_11-12_663_0 ER -
%0 Journal Article %A Alexandra Chronopoulou %A Ciprian A. Tudor %A Frederi G. Viens %T Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes %J Comptes Rendus. Mathématique %D 2009 %P 663-666 %V 347 %N 11-12 %I Elsevier %R 10.1016/j.crma.2009.03.026 %G en %F CRMATH_2009__347_11-12_663_0
Alexandra Chronopoulou; Ciprian A. Tudor; Frederi G. Viens. Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 663-666. doi : 10.1016/j.crma.2009.03.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.026/
[1] Statistics for Long-Memory Processes, Chapman and Hall, 1994
[2] Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths, Statist. Inference Stoch. Process., Volume 4 (2001), pp. 199-227
[3] I. Nourdin, G. Peccati, Stein's method on Wiener chaos, Probab. Theory Related Fields, 44 pages, available online, | DOI
[4] Malliavin Calculus and Related Topics, Springer, 2006
[5] Central limit theorems for multiple stochastic integrals and Malliavin calculus, Stochastic Process. Appl., Volume 118 (2008) no. 4, pp. 614-628
[6] C.A. Tudor, F. Viens, Variations and estimators for the selfsimilarity order through Malliavin calculus, Ann. Probab., in press
Cité par Sources :
Commentaires - Politique