Comptes Rendus
Number Theory
Integer points on cubic Thue equations
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 715-718.

We prove that there are infinitely many inequivalent cubic binary forms F with content 1 for which the Thue equation F(x,y)=m has (logm)6/7 solutions in integers x and y for infinitely many integers m.

Nous démontrons qu'il existe une infinité de formes binaires cubiques F avec contenu 1 qui sont inéquivalentes et pour lesquelles l'équation de Thue F(x,y)=m a (logm)6/7 a des solutions entiers x et y pour une infinité d'entiers m.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.04.018

Cameron L. Stewart 1

1 Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
@article{CRMATH_2009__347_13-14_715_0,
     author = {Cameron L. Stewart},
     title = {Integer points on cubic {Thue} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {715--718},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.018},
     language = {en},
}
TY  - JOUR
AU  - Cameron L. Stewart
TI  - Integer points on cubic Thue equations
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 715
EP  - 718
VL  - 347
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2009.04.018
LA  - en
ID  - CRMATH_2009__347_13-14_715_0
ER  - 
%0 Journal Article
%A Cameron L. Stewart
%T Integer points on cubic Thue equations
%J Comptes Rendus. Mathématique
%D 2009
%P 715-718
%V 347
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2009.04.018
%G en
%F CRMATH_2009__347_13-14_715_0
Cameron L. Stewart. Integer points on cubic Thue equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 715-718. doi : 10.1016/j.crma.2009.04.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.018/

[1] S.D. Chowla Contributions to the analytic theory of numbers (II), J. Indian Math. Soc., Volume 20 (1933), pp. 121-128

[2] E. Liverance (prepared in collaboration with Cameron Stewart) Binary cubic forms with many integral points, Surikaisekikenkyusho Kokyuroku, Volume 998 (1997), pp. 93-101

[3] K. Mahler Zur Approximation algebraischer Zahlen III (Über die mittlere Anzahl der Darstellungen grosser Zahlen durch binäre Formen), Acta Math., Volume 62 (1933), pp. 91-166

[4] K. Mahler On the lattice points on curves of genus 1, Proc. London Math. Soc., Volume 39 (1935) no. 2, pp. 431-466

[5] L.J. Mordell Diophantine Equations, Academic Press, London and New York, 1969

[6] J. Quer Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sci. Paris, Volume 305 (1987), pp. 215-218

[7] J.H. Silverman Integer points on curves of genus 1, J. London Math. Soc., Volume 28 (1983), pp. 1-7

[8] C.L. Stewart Cubic Thue equations with many solutions, Internat. Math. Res. Notices (2008) (2008:rnn040-11)

[9] A. Thue Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math., Volume 135 (1909), pp. 284-305

Cited by Sources:

This research was supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

Comments - Policy