[A Schur algorithm for transfer function of over-determined conservative systems, invariant in one direction]
We define an analogue of the Schur algorithm for transfer functions of lossless 2D systems which are invariant with respect to one of the variables.
Nous définissons un analogue de l'algorithme de Schur pour les fonctions de transfert de systèmes à deux indices sans pertes et invariants par rapport à l'une des variables.
Accepted:
Published online:
Daniel Alpay 1; Andrey Melnikov 1; Victor Vinnikov 1
@article{CRMATH_2009__347_13-14_729_0, author = {Daniel Alpay and Andrey Melnikov and Victor Vinnikov}, title = {Un algorithme de {Schur} pour les fonctions de transfert des syst\`emes surd\'etermin\'es invariants dans une direction}, journal = {Comptes Rendus. Math\'ematique}, pages = {729--733}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.029}, language = {fr}, }
TY - JOUR AU - Daniel Alpay AU - Andrey Melnikov AU - Victor Vinnikov TI - Un algorithme de Schur pour les fonctions de transfert des systèmes surdéterminés invariants dans une direction JO - Comptes Rendus. Mathématique PY - 2009 SP - 729 EP - 733 VL - 347 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2009.04.029 LA - fr ID - CRMATH_2009__347_13-14_729_0 ER -
%0 Journal Article %A Daniel Alpay %A Andrey Melnikov %A Victor Vinnikov %T Un algorithme de Schur pour les fonctions de transfert des systèmes surdéterminés invariants dans une direction %J Comptes Rendus. Mathématique %D 2009 %P 729-733 %V 347 %N 13-14 %I Elsevier %R 10.1016/j.crma.2009.04.029 %G fr %F CRMATH_2009__347_13-14_729_0
Daniel Alpay; Andrey Melnikov; Victor Vinnikov. Un algorithme de Schur pour les fonctions de transfert des systèmes surdéterminés invariants dans une direction. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 729-733. doi : 10.1016/j.crma.2009.04.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.029/
[1] Algorithme de Schur, espaces à noyau reproduisant et théorie des systèmes, Panoramas et Synthèses, vol. 6, Société Mathématique de France, Paris, 1998
[2] On reproducing kernel spaces the Schur algorithm, and interpolation in a general class of domains, Operator Theory and Complex Analysis (Sapporo, 1991), Oper. Theory Adv. Appl., vol. 59, Birkhäuser, Basel, 1992, pp. 30-77
[3] Canonical models in quantum scattering theory (C. Wilcox, ed.), Perturbation Theory and Its Applications in Quantum Mechanics, Wiley, New York, 1966, pp. 295-392
[4] Unitary operator colligations their characteristic functions, Russian Math. Surveys, Volume 33 (1978), pp. 159-191
[5] Spectral analysis of non-self-adjoint operators and intermediate systems, Uspekhi Mat. Nauk (N.S.), Volume 13 (1958) no. 1(79), pp. 3-85
[6] Schur parametrization of positive definite block-Toeplitz systems, SIAM J. Appl. Math., Volume 36 (1979), pp. 34-46
[7] H. Dym, J-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989
[8] A.P. Melnikov, Overdetermined 2D systems invariant in one direction and their transfer functions, PhD thesis, Ben-Gurion University, Beer-Sheva, Israel, submitted November 2008
[9] Overdetermined conservative 2D systems, invariant in one direction and a generalization of Potapov's theorem (preprint) | arXiv
[10] Über die Potenzreihen die im Innern des Einheitkreises beschränkten sind, I, J. Reine Angew. Math., Volume 147 (1917), pp. 205-232 English translation in: I. Schur methods in operator theory and signal processing (Operator Theory: Advances and Applications OT 18 (1986), Birkhäuser Verlag, Basel)
Cited by Sources:
Comments - Policy