[Solutions auto-similaires à décroissance lente pour une équation de coagulation avec transport non local]
L'existence de solutions auto-similaires préservant le volume total est établie pour une équation de coagulation incluant un terme de transport non local. Bien que cette équation admette des profils auto-similaires décroissant exponentiellement à l'infini, des profils auto-similaires avec une décroissance algébrique à l'infini sont construits lorsque le volume total est suffisamment petit.
We investigate the existence of self-similar solutions for a coagulation equation with nonlocal drift. In addition to explicitly given exponentially decaying solutions we establish the existence of self-similar profiles with algebraic decay.
Accepté le :
Publié le :
Michael Herrmann 1 ; Philippe Laurençot 2 ; Barbara Niethammer 1
@article{CRMATH_2009__347_15-16_909_0, author = {Michael Herrmann and Philippe Lauren\c{c}ot and Barbara Niethammer}, title = {Self-similar solutions with fat tails for a coagulation equation with nonlocal drift}, journal = {Comptes Rendus. Math\'ematique}, pages = {909--914}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.006}, language = {en}, }
TY - JOUR AU - Michael Herrmann AU - Philippe Laurençot AU - Barbara Niethammer TI - Self-similar solutions with fat tails for a coagulation equation with nonlocal drift JO - Comptes Rendus. Mathématique PY - 2009 SP - 909 EP - 914 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.05.006 LA - en ID - CRMATH_2009__347_15-16_909_0 ER -
%0 Journal Article %A Michael Herrmann %A Philippe Laurençot %A Barbara Niethammer %T Self-similar solutions with fat tails for a coagulation equation with nonlocal drift %J Comptes Rendus. Mathématique %D 2009 %P 909-914 %V 347 %N 15-16 %I Elsevier %R 10.1016/j.crma.2009.05.006 %G en %F CRMATH_2009__347_15-16_909_0
Michael Herrmann; Philippe Laurençot; Barbara Niethammer. Self-similar solutions with fat tails for a coagulation equation with nonlocal drift. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 909-914. doi : 10.1016/j.crma.2009.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.006/
[1] Stability of self-similar solutions in a simplified LSW model, Phys. D, Volume 222 (2006) no. 1–2, pp. 73-79
[2] Asymptotic behaviour in a simplified Lifshitz–Slyozov equation, Phys. D, Volume 124 (1998), pp. 166-176
[3] M. Herrmann, B. Niethammer, J.J.L. Velázquez, Self-similar solutions for the LSW model with encounters, preprint, 2008
[4] The Lifshitz–Slyozov equation with encounters, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 4, pp. 731-748
[5] The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, Volume 19 (1961), pp. 35-50
[6] Approach to self-similarity in Smoluchowski's coagulation equations, Comm. Pure Appl. Math., Volume 57 (2004) no. 9, pp. 1197-1232
[7] Non-self-similar behavior in the LSW theory of Ostwald ripening, J. Statist. Phys., Volume 95 (1999) no. 5/6, pp. 867-902
[8] Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Z. Elektrochem., Volume 65 (1961), pp. 581-591
- Coagulation Equations for Non-spherical Clusters, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 6 | DOI:10.1007/s00205-024-02061-0
- Fast fusion in a two-dimensional coagulation model, Journal de Mathématiques Pures et Appliquées, Volume 184 (2024), p. 91 | DOI:10.1016/j.matpur.2024.02.004
- An exact analytical solution to the nonstationary coagulation equation describing the endosomal network dynamics, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 8, p. 6746 | DOI:10.1002/mma.8838
- Anomalous dimensions of the Smoluchowski coagulation equation, Physical Review E, Volume 108 (2023) no. 6 | DOI:10.1103/physreve.108.064110
- Nonlinear dynamics of polydisperse assemblages of particles evolving in metastable media, The European Physical Journal Special Topics, Volume 229 (2020) no. 2-3, p. 383 | DOI:10.1140/epjst/e2019-900049-4
- Effects of external heat/mass sources and withdrawal rates of crystals from a metastable liquid on the evolution of particulate assemblages, The European Physical Journal Special Topics, Volume 228 (2019) no. 1, p. 25 | DOI:10.1140/epjst/e2019-800201-3
- The steady-state solutions of coagulation equations, International Journal of Heat and Mass Transfer, Volume 121 (2018), p. 884 | DOI:10.1016/j.ijheatmasstransfer.2018.01.069
- A transient distribution of particle assemblies at the concluding stage of phase transformations, Journal of Materials Science, Volume 52 (2017) no. 12, p. 6987 | DOI:10.1007/s10853-017-0931-y
- Kinetics of particle coarsening with allowance for Ostwald ripening and coagulation, Journal of Physics: Condensed Matter, Volume 28 (2016) no. 3, p. 035102 | DOI:10.1088/0953-8984/28/3/035102
- The large-time behaviour of coarsening of a particulate assemblage due to Ostwald ripening and coagulation, Philosophical Magazine Letters, Volume 96 (2016) no. 9, p. 355 | DOI:10.1080/09500839.2016.1225996
- Self-similar solutions of the second kind representing gelation in finite time for the Smoluchowski equation, Nonlinearity, Volume 27 (2014) no. 7, p. 1709 | DOI:10.1088/0951-7715/27/7/1709
- Self-Similar Solutions to a Kinetic Model for Grain Growth, Journal of Nonlinear Science, Volume 22 (2012) no. 3, p. 399 | DOI:10.1007/s00332-011-9122-1
- Self-similar solutions with algebraic decay for a non-local coagulation equation, Nonlinearity, Volume 23 (2010) no. 3, p. 579 | DOI:10.1088/0951-7715/23/3/008
- The influence of encounters on domain coarsening, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 90 (2010) no. 4, p. 259 | DOI:10.1002/zamm.200900384
- Self-similar solutions for the LSW model with encounters, Journal of Differential Equations, Volume 247 (2009) no. 8, p. 2282 | DOI:10.1016/j.jde.2009.07.021
Cité par 15 documents. Sources : Crossref
Commentaires - Politique