[Solutions auto-similaires à décroissance lente pour une équation de coagulation avec transport non local]
L'existence de solutions auto-similaires préservant le volume total est établie pour une équation de coagulation incluant un terme de transport non local. Bien que cette équation admette des profils auto-similaires décroissant exponentiellement à l'infini, des profils auto-similaires avec une décroissance algébrique à l'infini sont construits lorsque le volume total est suffisamment petit.
We investigate the existence of self-similar solutions for a coagulation equation with nonlocal drift. In addition to explicitly given exponentially decaying solutions we establish the existence of self-similar profiles with algebraic decay.
Accepté le :
Publié le :
Michael Herrmann 1 ; Philippe Laurençot 2 ; Barbara Niethammer 1
@article{CRMATH_2009__347_15-16_909_0, author = {Michael Herrmann and Philippe Lauren\c{c}ot and Barbara Niethammer}, title = {Self-similar solutions with fat tails for a coagulation equation with nonlocal drift}, journal = {Comptes Rendus. Math\'ematique}, pages = {909--914}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.006}, language = {en}, }
TY - JOUR AU - Michael Herrmann AU - Philippe Laurençot AU - Barbara Niethammer TI - Self-similar solutions with fat tails for a coagulation equation with nonlocal drift JO - Comptes Rendus. Mathématique PY - 2009 SP - 909 EP - 914 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.05.006 LA - en ID - CRMATH_2009__347_15-16_909_0 ER -
%0 Journal Article %A Michael Herrmann %A Philippe Laurençot %A Barbara Niethammer %T Self-similar solutions with fat tails for a coagulation equation with nonlocal drift %J Comptes Rendus. Mathématique %D 2009 %P 909-914 %V 347 %N 15-16 %I Elsevier %R 10.1016/j.crma.2009.05.006 %G en %F CRMATH_2009__347_15-16_909_0
Michael Herrmann; Philippe Laurençot; Barbara Niethammer. Self-similar solutions with fat tails for a coagulation equation with nonlocal drift. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 909-914. doi : 10.1016/j.crma.2009.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.006/
[1] Stability of self-similar solutions in a simplified LSW model, Phys. D, Volume 222 (2006) no. 1–2, pp. 73-79
[2] Asymptotic behaviour in a simplified Lifshitz–Slyozov equation, Phys. D, Volume 124 (1998), pp. 166-176
[3] M. Herrmann, B. Niethammer, J.J.L. Velázquez, Self-similar solutions for the LSW model with encounters, preprint, 2008
[4] The Lifshitz–Slyozov equation with encounters, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 4, pp. 731-748
[5] The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, Volume 19 (1961), pp. 35-50
[6] Approach to self-similarity in Smoluchowski's coagulation equations, Comm. Pure Appl. Math., Volume 57 (2004) no. 9, pp. 1197-1232
[7] Non-self-similar behavior in the LSW theory of Ostwald ripening, J. Statist. Phys., Volume 95 (1999) no. 5/6, pp. 867-902
[8] Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Z. Elektrochem., Volume 65 (1961), pp. 581-591
Cité par Sources :
Commentaires - Politique