Comptes Rendus
Partial Differential Equations
Self-similar solutions with fat tails for a coagulation equation with nonlocal drift
[Solutions auto-similaires à décroissance lente pour une équation de coagulation avec transport non local]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 909-914.

L'existence de solutions auto-similaires préservant le volume total est établie pour une équation de coagulation incluant un terme de transport non local. Bien que cette équation admette des profils auto-similaires décroissant exponentiellement à l'infini, des profils auto-similaires avec une décroissance algébrique à l'infini sont construits lorsque le volume total est suffisamment petit.

We investigate the existence of self-similar solutions for a coagulation equation with nonlocal drift. In addition to explicitly given exponentially decaying solutions we establish the existence of self-similar profiles with algebraic decay.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.05.006

Michael Herrmann 1 ; Philippe Laurençot 2 ; Barbara Niethammer 1

1 Oxford Centre for Nonlinear PDE, Mathematical Institute, University of Oxford, 24-29 St. Giles', Oxford, OX1 3LB, United Kingdom
2 Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS UMR 5219, 118, route de Narbonne, F-31062 Toulouse cedex 9, France
@article{CRMATH_2009__347_15-16_909_0,
     author = {Michael Herrmann and Philippe Lauren\c{c}ot and Barbara Niethammer},
     title = {Self-similar solutions with fat tails for a coagulation equation with nonlocal drift},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {909--914},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.05.006},
     language = {en},
}
TY  - JOUR
AU  - Michael Herrmann
AU  - Philippe Laurençot
AU  - Barbara Niethammer
TI  - Self-similar solutions with fat tails for a coagulation equation with nonlocal drift
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 909
EP  - 914
VL  - 347
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2009.05.006
LA  - en
ID  - CRMATH_2009__347_15-16_909_0
ER  - 
%0 Journal Article
%A Michael Herrmann
%A Philippe Laurençot
%A Barbara Niethammer
%T Self-similar solutions with fat tails for a coagulation equation with nonlocal drift
%J Comptes Rendus. Mathématique
%D 2009
%P 909-914
%V 347
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2009.05.006
%G en
%F CRMATH_2009__347_15-16_909_0
Michael Herrmann; Philippe Laurençot; Barbara Niethammer. Self-similar solutions with fat tails for a coagulation equation with nonlocal drift. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 909-914. doi : 10.1016/j.crma.2009.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.006/

[1] J. Carr Stability of self-similar solutions in a simplified LSW model, Phys. D, Volume 222 (2006) no. 1–2, pp. 73-79

[2] J. Carr; O. Penrose Asymptotic behaviour in a simplified Lifshitz–Slyozov equation, Phys. D, Volume 124 (1998), pp. 166-176

[3] M. Herrmann, B. Niethammer, J.J.L. Velázquez, Self-similar solutions for the LSW model with encounters, preprint, 2008

[4] Ph. Laurençot The Lifshitz–Slyozov equation with encounters, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 4, pp. 731-748

[5] I.M. Lifshitz; V.V. Slyozov The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, Volume 19 (1961), pp. 35-50

[6] G. Menon; R.L. Pego Approach to self-similarity in Smoluchowski's coagulation equations, Comm. Pure Appl. Math., Volume 57 (2004) no. 9, pp. 1197-1232

[7] B. Niethammer; R.L. Pego Non-self-similar behavior in the LSW theory of Ostwald ripening, J. Statist. Phys., Volume 95 (1999) no. 5/6, pp. 867-902

[8] C. Wagner Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Z. Elektrochem., Volume 65 (1961), pp. 581-591

  • Iulia Cristian; Juan J. L. Velázquez Coagulation Equations for Non-spherical Clusters, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 6 | DOI:10.1007/s00205-024-02061-0
  • Iulia Cristian; Juan J.L. Velázquez Fast fusion in a two-dimensional coagulation model, Journal de Mathématiques Pures et Appliquées, Volume 184 (2024), p. 91 | DOI:10.1016/j.matpur.2024.02.004
  • Eugenya V. Makoveeva An exact analytical solution to the nonstationary coagulation equation describing the endosomal network dynamics, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 8, p. 6746 | DOI:10.1002/mma.8838
  • Jens Eggers; Marco Fontelos Anomalous dimensions of the Smoluchowski coagulation equation, Physical Review E, Volume 108 (2023) no. 6 | DOI:10.1103/physreve.108.064110
  • Dmitri V. Alexandrov Nonlinear dynamics of polydisperse assemblages of particles evolving in metastable media, The European Physical Journal Special Topics, Volume 229 (2020) no. 2-3, p. 383 | DOI:10.1140/epjst/e2019-900049-4
  • Eugenya V. Makoveeva; Dmitri V. Alexandrov Effects of external heat/mass sources and withdrawal rates of crystals from a metastable liquid on the evolution of particulate assemblages, The European Physical Journal Special Topics, Volume 228 (2019) no. 1, p. 25 | DOI:10.1140/epjst/e2019-800201-3
  • D.V. Alexandrov The steady-state solutions of coagulation equations, International Journal of Heat and Mass Transfer, Volume 121 (2018), p. 884 | DOI:10.1016/j.ijheatmasstransfer.2018.01.069
  • D. V. Alexandrov A transient distribution of particle assemblies at the concluding stage of phase transformations, Journal of Materials Science, Volume 52 (2017) no. 12, p. 6987 | DOI:10.1007/s10853-017-0931-y
  • D V Alexandrov Kinetics of particle coarsening with allowance for Ostwald ripening and coagulation, Journal of Physics: Condensed Matter, Volume 28 (2016) no. 3, p. 035102 | DOI:10.1088/0953-8984/28/3/035102
  • D. V. Alexandrov The large-time behaviour of coarsening of a particulate assemblage due to Ostwald ripening and coagulation, Philosophical Magazine Letters, Volume 96 (2016) no. 9, p. 355 | DOI:10.1080/09500839.2016.1225996
  • Giancarlo Breschi; Marco A Fontelos Self-similar solutions of the second kind representing gelation in finite time for the Smoluchowski equation, Nonlinearity, Volume 27 (2014) no. 7, p. 1709 | DOI:10.1088/0951-7715/27/7/1709
  • Michael Herrmann; Philippe Laurençot; Barbara Niethammer Self-Similar Solutions to a Kinetic Model for Grain Growth, Journal of Nonlinear Science, Volume 22 (2012) no. 3, p. 399 | DOI:10.1007/s00332-011-9122-1
  • Shangbing Ai Self-similar solutions with algebraic decay for a non-local coagulation equation, Nonlinearity, Volume 23 (2010) no. 3, p. 579 | DOI:10.1088/0951-7715/23/3/008
  • B. Niethammer The influence of encounters on domain coarsening, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 90 (2010) no. 4, p. 259 | DOI:10.1002/zamm.200900384
  • M. Herrmann; B. Niethammer; J.J.L. Velázquez Self-similar solutions for the LSW model with encounters, Journal of Differential Equations, Volume 247 (2009) no. 8, p. 2282 | DOI:10.1016/j.jde.2009.07.021

Cité par 15 documents. Sources : Crossref

Commentaires - Politique