[Existence et concentration pour l'équation de Schrödinger non linéaire avec des potentiels à décroissance rapide]
Nous prouvons l'existence de solutions positives non triviales de
The existence of positive solutions to
Accepté le :
Publié le :
Vitaly Moroz 1 ; Jean Van Schaftingen 2
@article{CRMATH_2009__347_15-16_921_0, author = {Vitaly Moroz and Jean Van Schaftingen}, title = {Existence and concentration for nonlinear {Schr\"odinger} equations with fast decaying potentials}, journal = {Comptes Rendus. Math\'ematique}, pages = {921--926}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.009}, language = {en}, }
TY - JOUR AU - Vitaly Moroz AU - Jean Van Schaftingen TI - Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials JO - Comptes Rendus. Mathématique PY - 2009 SP - 921 EP - 926 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.05.009 LA - en ID - CRMATH_2009__347_15-16_921_0 ER -
%0 Journal Article %A Vitaly Moroz %A Jean Van Schaftingen %T Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials %J Comptes Rendus. Mathématique %D 2009 %P 921-926 %V 347 %N 15-16 %I Elsevier %R 10.1016/j.crma.2009.05.009 %G en %F CRMATH_2009__347_15-16_921_0
Vitaly Moroz; Jean Van Schaftingen. Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 921-926. doi : 10.1016/j.crma.2009.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.009/
[1] Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., Volume 7 (2005), pp. 117-144
[2] Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives, Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 19-30
[3] Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., Volume 98 (2006), pp. 317-348
[4] Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 903-908
[5] Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoamericana, Volume 24 (2008), pp. 297-351
[6] Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, Volume 4 (1996), pp. 121-137
[7] Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., Volume 69 (1986), pp. 397-408
[8] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Volume 34 (1981), pp. 525-598
[9] V. Moroz, J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var., | DOI
Cité par Sources :
Commentaires - Politique