In this paper we study numerically the cost of the null controllability of a linear control parabolic 1-D equation as the diffusion coefficient tends to 0. For this linear control parabolic 1-D equation, we know from a prior work by J.-M. Coron and S. Guerrero (2005), that, when the diffusion coefficient tends to 0, for a small controllability time, the norm of the optimal control tends to infinity and that, if the controllability time is large enough, this norm tends to 0. For controllability times which are not covered by this work, we estimate numerically the norm of the optimal control as the diffusion coefficient tends to 0.
Dans cette Note nous étudions de manière numérique le coût de la contrôlabilité à zéro d'une équation de convection diffusion unidimensionnelle quand le coefficient de diffusion tend vers 0. Nous savons, d'après un travail antérieur de J.-M. Coron et S. Guerrero (2005), que pour un temps de contrôlabilité trop petit la norme du contrôle optimal tend vers l'infini quand le terme de diffusion tend vers zéro et que, par contre, cette norme tend vers 0 si le temps de contrôlabilité est assez grand. Pour des valeurs du temps de contrôle qui ne sont pas couvertes par ce travail, nous étudions numériquement la norme du contrôle optimal quand le coefficient de diffusion tend vers 0.
Accepted:
Published online:
Ali Salem 1
@article{CRMATH_2009__347_15-16_927_0, author = {Ali Salem}, title = {A numerical study of the null boundary controllability of a convection diffusion equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {927--932}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.002}, language = {en}, }
Ali Salem. A numerical study of the null boundary controllability of a convection diffusion equation. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 927-932. doi : 10.1016/j.crma.2009.05.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.002/
[1] J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, May 18, 2007
[2] Singular optimal control: A linear 1-D parabolic–hyperbolic example, Asymptot. Anal., Volume 44 (2005) no. 3–4, pp. 237-257
[3] J.-M. Coron, O. Glass, S. Ervedoza, Uniform observability estimates for the 1-D discretized wave equation and the random choice method, preprint, 2009
[4] , Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 9, Masson, 1984
[5] On the observability of time-discrete conservative linear systems, J. Funct. Anal., Volume 254 (2008) no. 12, pp. 3037-3078
[6] Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., Volume 43 (1971), pp. 272-292
[7] Controllability of Evolution Equations, Seoul National University, 1996
[8] Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett., Volume 55 (2006) no. 12, pp. 597-609
[9] Contrôle exacte de l'équation de la chaleur, Comm. Partial Differential Equations, Volume 20 (1995), pp. 335-356 (in French)
[10] , Contrôlabilité exacte, Perturbations et Stabilization de Systems Distribuites, Tome 1, vol. 8, Masson, Paris, 1988
Cited by Sources:
Comments - Policy