Comptes Rendus
Analyse mathématique
Nouvelle approche du théorème de ABB
Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 853-856.

Cette Note présente un résultat de densité de type (ABB) pour la topologie forte dans un espace de Banach muni du préordre associé à un cône convexe possédant une base bornée. L'hypothèse de compacité est sensiblement affaiblie et la méthode présentée ici est nouvelle à notre connaissance. Basée sur des propriétés du cône de Bishop–Phelps, elle ne nécessite pas l'utilisation des cônes de dilatation de Hening.

This Note presents a density result of the ABB theorem type for a strong topology of a Banach space equipped with the preorder associated to a convex well-based cone. The hypothesis of compactness is relaxed. Here the technique used is based on properties of the Bishop–Phelps cone, and does not require any property of the Hening dilating cone.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.05.010

Abdelhamid Bourass 1 ; Lahoussine Lafhim 1

1 Département de mathématiques, faculté des sciences, université Mohamed V-Agdal, Rabat, Maroc
@article{CRMATH_2009__347_15-16_853_0,
     author = {Abdelhamid Bourass and Lahoussine Lafhim},
     title = {Nouvelle approche du th\'eor\`eme de {ABB}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {853--856},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.05.010},
     language = {fr},
}
TY  - JOUR
AU  - Abdelhamid Bourass
AU  - Lahoussine Lafhim
TI  - Nouvelle approche du théorème de ABB
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 853
EP  - 856
VL  - 347
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2009.05.010
LA  - fr
ID  - CRMATH_2009__347_15-16_853_0
ER  - 
%0 Journal Article
%A Abdelhamid Bourass
%A Lahoussine Lafhim
%T Nouvelle approche du théorème de ABB
%J Comptes Rendus. Mathématique
%D 2009
%P 853-856
%V 347
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2009.05.010
%G fr
%F CRMATH_2009__347_15-16_853_0
Abdelhamid Bourass; Lahoussine Lafhim. Nouvelle approche du théorème de ABB. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 853-856. doi : 10.1016/j.crma.2009.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.010/

[1] K.J. Arrow; E.W. Barankin; D. Blackwell Admissible Points of Convex Sets. Contribution to the Theory of Games, Princeton Univ. Press, Princeton, NJ, 1953

[2] H. Attouch; H. Riahi Stability result for Ekeland's ϵ-variational principle and cone extremal solutions, Math. Oper. Res., Volume 18 (1993) no. 1, pp. 173-201

[3] R.D. Bourgin Geometric Aspects of Convex Sets with Radon–Nikodym Property, Lecture Notes in Math., vol. 993, Springer-Verlag, 1983

[4] A. Daniilidis ABB theorem and related results in cone duality: a survey, Optimization, Lecture Notes in Econom. and Math. Systems, vol. 481, Springer, Berlin, 2000, pp. 119-131

[5] F. Ferro A new ABB theorem in Banach spaces, Optimization, Volume 46 (1999), pp. 353-362

[6] R.J. Gallagher; O.A. Salh Two generalization of a theorem of ABB, SIAM J., Volume 31 (1993) no. 1, pp. 247-256

[7] A. Göpfert; C.H.R. Tammer; C. Zălinescu A new ABB theorem in normed vector spaces, Optimization, Volume 53 (2004) no. 4, pp. 369-376

[8] J. Jahn A generalization of a theorem of Barankin, and Blackwell, SIAM J. Control Appl., Volume 26 (1988) no. 5

[9] J.P. Penot The drop theorem, The petal theorem and Ekeland variational principle, Nonlinear Anal. Theory, Methods Appl., Volume 10 (1986) no. 9, pp. 813-822

[10] R.R. Phelps Convex Functions, Monotone Operators and Differentiability, Lecture Note in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989

[11] F. Wantao On the density of proper efficient points, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 1213-1217

Cité par Sources :

Commentaires - Politique