[New concept of the ABB Theorem]
This Note presents a density result of the ABB theorem type for a strong topology of a Banach space equipped with the preorder associated to a convex well-based cone. The hypothesis of compactness is relaxed. Here the technique used is based on properties of the Bishop–Phelps cone, and does not require any property of the Hening dilating cone.
Cette Note présente un résultat de densité de type (ABB) pour la topologie forte dans un espace de Banach muni du préordre associé à un cône convexe possédant une base bornée. L'hypothèse de compacité est sensiblement affaiblie et la méthode présentée ici est nouvelle à notre connaissance. Basée sur des propriétés du cône de Bishop–Phelps, elle ne nécessite pas l'utilisation des cônes de dilatation de Hening.
Accepted:
Published online:
Abdelhamid Bourass 1; Lahoussine Lafhim 1
@article{CRMATH_2009__347_15-16_853_0, author = {Abdelhamid Bourass and Lahoussine Lafhim}, title = {Nouvelle approche du th\'eor\`eme de {ABB}}, journal = {Comptes Rendus. Math\'ematique}, pages = {853--856}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.010}, language = {fr}, }
Abdelhamid Bourass; Lahoussine Lafhim. Nouvelle approche du théorème de ABB. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 853-856. doi : 10.1016/j.crma.2009.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.010/
[1] Admissible Points of Convex Sets. Contribution to the Theory of Games, Princeton Univ. Press, Princeton, NJ, 1953
[2] Stability result for Ekeland's ϵ-variational principle and cone extremal solutions, Math. Oper. Res., Volume 18 (1993) no. 1, pp. 173-201
[3] Geometric Aspects of Convex Sets with Radon–Nikodym Property, Lecture Notes in Math., vol. 993, Springer-Verlag, 1983
[4] ABB theorem and related results in cone duality: a survey, Optimization, Lecture Notes in Econom. and Math. Systems, vol. 481, Springer, Berlin, 2000, pp. 119-131
[5] A new ABB theorem in Banach spaces, Optimization, Volume 46 (1999), pp. 353-362
[6] Two generalization of a theorem of ABB, SIAM J., Volume 31 (1993) no. 1, pp. 247-256
[7] A new ABB theorem in normed vector spaces, Optimization, Volume 53 (2004) no. 4, pp. 369-376
[8] A generalization of a theorem of Barankin, and Blackwell, SIAM J. Control Appl., Volume 26 (1988) no. 5
[9] The drop theorem, The petal theorem and Ekeland variational principle, Nonlinear Anal. Theory, Methods Appl., Volume 10 (1986) no. 9, pp. 813-822
[10] Convex Functions, Monotone Operators and Differentiability, Lecture Note in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989
[11] On the density of proper efficient points, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 1213-1217
Cited by Sources:
Comments - Policy