Comptes Rendus
Mathematical Problems in Mechanics
A new variational approach to the stability of gravitational systems
[Une nouvelle approche variationnelle pour la stabilité des systèmes gravitationnels]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 979-984.

Nous considérons le système de Vlasov–Poisson gravitationnel qui décrit l'état d'un système stellaire soumis à la seule force de gravitation. Une conjecture classique en astrophysique est que les états stationnaires du système qui sont des fonctions strictement décroissantes de leur énergie microscopique sont non-linéairement stables par le flot. Ceci fut démontré dès 1961 par Antonov au niveau linéaire. Depuis, l'application des techniques variationelles de concentration compacité telles qu'introduites par P.-L. Lions in 1984 a permis de prouver la stabilité orbitale de certaines sous-classes de profils de type état fondamental. Dans cette Note, nous proposons une nouvelle approche variationnelle basée sur la minimisation du Hamiltonien sous des contraintes d'équimesurabilité, qui sont préservées par le transport non linéaire. Nous démontrons que tout état stationnaire qui est une fonction décroissante de son énergie microscopique est un minimiseur local, ce qui implique sa stabilité non-linéaire contre des perturbations à symétrie sphérique.

We consider the three-dimensional gravitational Vlasov–Poisson system which describes the mechanical state of a stellar system subject to its own gravity. A well-known conjecture in astrophysics is that the steady state solutions which are nonincreasing functions of their microscopic energy are nonlinearly stable by the flow. This was proved at the linear level by Antonov in 1961. Since then, standard variational techniques based on concentration compactness methods as introduced by P.-L. Lions in 1984 have led to the nonlinear stability of subclasses of stationary solutions of ground state type. In this Note, we propose a new variational approach based on the minimization of the Hamiltonian under equimeasurable constraints, which are conserved by the nonlinear transport flow, and recognize any steady state solution which is a nonincreasing function of its microscopic energy as a local minimizer. The outcome is the proof of its nonlinear stability under radially symmetric perturbations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.005

Mohammed Lemou 1 ; Florian Méhats 2 ; Pierre Raphaël 3

1 CNRS and IRMAR, université de Rennes 1, 35042 Rennes, France
2 IRMAR, université de Rennes 1, 35042 Rennes, France
3 IMT, université Paul-Sabatier, 31062 Toulouse cedex 9, France
@article{CRMATH_2009__347_15-16_979_0,
     author = {Mohammed Lemou and Florian M\'ehats and Pierre Rapha\"el},
     title = {A new variational approach to the stability of gravitational systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {979--984},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.005},
     language = {en},
}
TY  - JOUR
AU  - Mohammed Lemou
AU  - Florian Méhats
AU  - Pierre Raphaël
TI  - A new variational approach to the stability of gravitational systems
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 979
EP  - 984
VL  - 347
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2009.06.005
LA  - en
ID  - CRMATH_2009__347_15-16_979_0
ER  - 
%0 Journal Article
%A Mohammed Lemou
%A Florian Méhats
%A Pierre Raphaël
%T A new variational approach to the stability of gravitational systems
%J Comptes Rendus. Mathématique
%D 2009
%P 979-984
%V 347
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2009.06.005
%G en
%F CRMATH_2009__347_15-16_979_0
Mohammed Lemou; Florian Méhats; Pierre Raphaël. A new variational approach to the stability of gravitational systems. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 979-984. doi : 10.1016/j.crma.2009.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.005/

[1] A.V. Antonov Remarks on the problem of stability in stellar dynamics, Soviet Astr. AJ., Volume 4 (1961), pp. 859-867

[2] J. Batt; W. Faltenbacher; E. Horst Stationary spherically symmetric models in stellar dynamics, Arch. Ration. Mech. Anal., Volume 93 (1986), pp. 159-183

[3] J. Binney; S. Tremaine Galactic Dynamics, Princeton University Press, 1987

[4] Y. Guo; Z. Lin Unstable and stable galaxy models, Comm. Math. Phys., Volume 279 (2008) no. 3, pp. 789-813

[5] Y. Guo; G. Rein Isotropic steady states in galactic dynamics, Comm. Math. Phys., Volume 219 (2001), pp. 607-629

[6] Y. Guo; G. Rein A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Comm. Math. Phys., Volume 271 (2007) no. 2, pp. 489-509

[7] M. Lemou; F. Méhats; P. Raphaël On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov–Poisson system, Arch. Ration. Mech. Anal., Volume 189 (2008) no. 3, pp. 425-468

[8] M. Lemou, F. Méhats, P. Raphaël, A new variational approach to the stability of gravitational systems, submitted for publication

[9] M. Lemou, P. Méhats, P. Raphaël, Stable ground states for the relativistic gravitational Vlasov–Poisson system, Comm. Partial Differential Equations, in press

[10] P.-L. Lions The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145

[11] Z. Lin; W. Strauss Nonlinear stability and instability of relativistic Vlasov–Maxwell systems, Comm. Pure Appl. Math., Volume 60 (2007) no. 6, pp. 789-837

[12] D. Lynden-Bell The Hartree–Fock exchange operator and the stability of galaxies, Mon. Not. R. Astr. Soc., Volume 144 (1969), pp. 189-217

[13] C. Marchioro; M. Pulvirenti Some considerations on the nonlinear stability of stationary planar Euler flows, Comm. Math. Phys., Volume 100 (1985) no. 3, pp. 343-354

[14] O. Sanchez; J. Soler Orbital stability for polytropic galaxies, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 781-802

Cité par Sources :

Commentaires - Politique