[Équations de Fokker–Planck non-linéaires en champ moyen et leurs applications en physique, astrophysique et biologie]
We discuss a general class of nonlinear mean-field Fokker–Planck equations [P.-H. Chavanis, Phys. Rev. E 68 (2003) 036108] and show their applications in different domains of physics, astrophysics and biology. These equations are associated with generalized entropic functionals and non-Boltzmannian distributions (Fermi–Dirac, Bose–Einstein, Tsallis, …). They furthermore involve an arbitrary binary potential of interaction. We emphasize analogies between different topics (two-dimensional turbulence, self-gravitating systems, Debye–Hückel theory of electrolytes, porous media, chemotaxis of bacterial populations, Bose–Einstein condensation, BMF model, Cahn–Hilliard equations, …) which were previously disconnected. All these examples (and probably many others) are particular cases of this general class of nonlinear mean-field Fokker–Planck equations.
Je présente une classe générale d'équations de Fokker–Planck non-linéaires en champ moyen [P.-H. Chavanis, Phys. Rev. E 68 (2003) 036108] et montre leurs applications dans différents domaines de la physique, de l'astrophysique et de la biologie. Ces équations sont associées à des fonctionnelles entropiques généralisées et à des distributions non-Boltzmanniennes (Fermi–Dirac, Bose–Einstein, Tsallis, …). De plus, elles incluent un potentiel d'interaction binaire arbitraire. Je souligne des analogies entre différents domaines (turbulence bidimensionnelle, systèmes auto-gravitants, théorie des electrolytes de Debye–Hückel, milieux poreux, chimiotactie des populations bactériennes, condensation de Bose–Einstein, modèle BMF, équations de Cahn–Hilliard, …) qui étaient auparavant déconnectés. Tous ces exemples (et probablement beaucoup d'autres) sont des cas particuliers de cette classe générale d'équations de Fokker–Planck non-linéaires en champ moyen.
Mots-clés : Classe générale d'équations de Fokker–Planck, Équation de Vlasov, Interaction à longue portée
Pierre-Henri Chavanis 1
@article{CRPHYS_2006__7_3-4_318_0, author = {Pierre-Henri Chavanis}, title = {Nonlinear mean-field {Fokker{\textendash}Planck} equations and their applications in physics, astrophysics and biology}, journal = {Comptes Rendus. Physique}, pages = {318--330}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.01.004}, language = {en}, }
TY - JOUR AU - Pierre-Henri Chavanis TI - Nonlinear mean-field Fokker–Planck equations and their applications in physics, astrophysics and biology JO - Comptes Rendus. Physique PY - 2006 SP - 318 EP - 330 VL - 7 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2006.01.004 LA - en ID - CRPHYS_2006__7_3-4_318_0 ER -
Pierre-Henri Chavanis. Nonlinear mean-field Fokker–Planck equations and their applications in physics, astrophysics and biology. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 318-330. doi : 10.1016/j.crhy.2006.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.004/
[1] Subtle is the Lord, Oxford Univ. Press, New York, 1982
[2] J. Stat. Phys., 52 (1988), p. 479
[3] Physica A, 68 (2003), p. 036108
[4] Physica A, 296 (2001), p. 405
[5] Physica A, 222 (1995), p. 347
[6] J. Theor. Biol., 26 (1970), p. 399
[7] Statistical mechanics of two-dimensional vortices and stellar systems (T. Dauxois; S. Ruffo; E. Arimondo; M. Wilkens, eds.), Dynamics and Thermodynamics of Systems with Long Range Interactions, Lecture Notes in Phys., Springer-Verlag, Berlin/New York, 2002 | arXiv
[8] Phys. Rev. Lett., 69 (1992), p. 2776
[9] Mon. Not. R. Astron. Soc., 471 (1996), p. 385
[10] Phys. Fluids, 11 (1999), p. 3465
[11] arXiv
|[12] Physica A, 341 (2004), p. 145
[13] Phys. Lett. A, 290 (2001), p. 93
[14] Phys. Rev. E, 57 (1998), p. 6634
[15] Phys. Rev. E, 66 (2002), p. 036105
[16] Phys. Rev. E, 69 (2004), p. 016116
[17] Banach Center Publ., 66 (2004), p. 103
[18] arXiv
|[19] Eur. Phys. J. B, 46 (2005), p. 61
[20] arXiv
|[21] J. Fluid Mech., 311 (1990), p. 575
[22] Nonlinearity, 15 (2002), p. 239
[23] Physica D, Proceedings of the Workshop on “Interdisciplinary Aspects of Turbulence” at Ringberg Castle, Tegernsee, Germany, 200, Max-Planck Institut für Astrophysik, 2005, p. 257 | arXiv
[24] Physica A, 359 (2006), p. 177
[25] J. Binney, S. Tremaine, Galactic Dynamics, Princeton Series in Astrophysics, 1987
[26] Mon. Not. R. Astron. Soc., 136 (1967), p. 101
[27] Physica A, 219, 1986, p. 285 (Astron. Astrophys., in press) | arXiv
[28] Phys. Z., 24 (1925), p. 305
[29] Trans. Amer. Math. Soc., 329 (1992), p. 819
[30] et al. Phys. Rev. Lett., 90 (2003), p. 118101
- Computation and control of unstable steady states for mean field multiagent systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 481 (2025) no. 2311 | DOI:10.1098/rspa.2024.0476
- Stability of aerostatic equilibria in porous medium flows, Journal of Differential Equations, Volume 378 (2024), p. 678 | DOI:10.1016/j.jde.2023.10.018
- An operational matrix strategy for time fractional Fokker-Planck equation in an unbounded space domain, Physica Scripta, Volume 99 (2024) no. 6, p. 065250 | DOI:10.1088/1402-4896/ad4a9f
- An excellent scheme for the couple-Higgs equation, Thermal Science, Volume 28 (2024) no. 4 Part B, p. 3523 | DOI:10.2298/tsci2404523w
- Solving Partial Differential Equations by LS-SVM, Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines (2023), p. 171 | DOI:10.1007/978-981-19-6553-1_8
- A semigroup approach to a reaction–diffusion system with cross-diffusion, Nonlinear Analysis, Volume 230 (2023), p. 113222 | DOI:10.1016/j.na.2023.113222
- Stability of rarefaction wave for viscous vasculogenesis model, Discrete and Continuous Dynamical Systems - B, Volume 27 (2022) no. 12, p. 7089 | DOI:10.3934/dcdsb.2022034
- Entropic Regularization of NonGradient Systems, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 4, p. 4495 | DOI:10.1137/21m1414668
- Large time dynamics of 2D semi-dissipative Boussinesq equations, Nonlinearity, Volume 33 (2020) no. 5, p. 2481 | DOI:10.1088/1361-6544/ab74b1
- Generalized Fokker-Planck equations derived from nonextensive entropies asymptotically equivalent to Boltzmann-Gibbs, Physical Review E, Volume 102 (2020) no. 1 | DOI:10.1103/physreve.102.012118
- The Generalized Stochastic Smoluchowski Equation, Entropy, Volume 21 (2019) no. 10, p. 1006 | DOI:10.3390/e21101006
- Generalized Euler, Smoluchowski and Schrödinger equations admitting self-similar solutions with a Tsallis invariant profile, The European Physical Journal Plus, Volume 134 (2019) no. 7 | DOI:10.1140/epjp/i2019-12706-y
- One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift, Russian Physics Journal, Volume 60 (2018) no. 12, p. 2063 | DOI:10.1007/s11182-018-1327-4
- A New Approach to Time-Dependent Solutions to the Non-Linear Fokker-Planck Equations Related to Arbitrary Functions of Tsallis Entropy: A Mathematical Study and Investigation, Journal of Modern Physics, Volume 03 (2012) no. 05, p. 420 | DOI:10.4236/jmp.2012.35058
- A stochastic Keller–Segel model of chemotaxis, Communications in Nonlinear Science and Numerical Simulation, Volume 15 (2010) no. 1, p. 60 | DOI:10.1016/j.cnsns.2008.09.002
- Nonlinear Theory of Quantum Brownian Motion, International Journal of Theoretical Physics, Volume 48 (2009) no. 1, p. 85 | DOI:10.1007/s10773-008-9784-0
- Dynamical stability of systems with long-range interactions: application of the Nyquist method to the HMF model, The European Physical Journal B, Volume 69 (2009) no. 3, p. 389 | DOI:10.1140/epjb/e2009-00180-9
- Hamiltonian and Brownian systems with long-range interactions: III. The BBGKY hierarchy for spatially inhomogeneous systems, Physica A: Statistical Mechanics and its Applications, Volume 387 (2008) no. 4, p. 787 | DOI:10.1016/j.physa.2007.10.026
- Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations, The European Physical Journal B, Volume 62 (2008) no. 2, p. 179 | DOI:10.1140/epjb/e2008-00142-9
- Logotropic distributions, Physica A: Statistical Mechanics and its Applications, Volume 375 (2007) no. 1, p. 140 | DOI:10.1016/j.physa.2006.08.076
- Kinetic and hydrodynamic models of chemotactic aggregation, Physica A: Statistical Mechanics and its Applications, Volume 384 (2007) no. 2, p. 199 | DOI:10.1016/j.physa.2007.05.069
- Phase separation of bacterial colonies in a limit of high degradation, The European Physical Journal B, Volume 54 (2006) no. 4, p. 525 | DOI:10.1140/epjb/e2007-00021-y
Cité par 22 documents. Sources : Crossref
Commentaires - Politique