Comptes Rendus
Nonlinear mean-field Fokker–Planck equations and their applications in physics, astrophysics and biology
[Équations de Fokker–Planck non-linéaires en champ moyen et leurs applications en physique, astrophysique et biologie]
Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 318-330.

We discuss a general class of nonlinear mean-field Fokker–Planck equations [P.-H. Chavanis, Phys. Rev. E 68 (2003) 036108] and show their applications in different domains of physics, astrophysics and biology. These equations are associated with generalized entropic functionals and non-Boltzmannian distributions (Fermi–Dirac, Bose–Einstein, Tsallis, …). They furthermore involve an arbitrary binary potential of interaction. We emphasize analogies between different topics (two-dimensional turbulence, self-gravitating systems, Debye–Hückel theory of electrolytes, porous media, chemotaxis of bacterial populations, Bose–Einstein condensation, BMF model, Cahn–Hilliard equations, …) which were previously disconnected. All these examples (and probably many others) are particular cases of this general class of nonlinear mean-field Fokker–Planck equations.

Je présente une classe générale d'équations de Fokker–Planck non-linéaires en champ moyen [P.-H. Chavanis, Phys. Rev. E 68 (2003) 036108] et montre leurs applications dans différents domaines de la physique, de l'astrophysique et de la biologie. Ces équations sont associées à des fonctionnelles entropiques généralisées et à des distributions non-Boltzmanniennes (Fermi–Dirac, Bose–Einstein, Tsallis, …). De plus, elles incluent un potentiel d'interaction binaire arbitraire. Je souligne des analogies entre différents domaines (turbulence bidimensionnelle, systèmes auto-gravitants, théorie des electrolytes de Debye–Hückel, milieux poreux, chimiotactie des populations bactériennes, condensation de Bose–Einstein, modèle BMF, équations de Cahn–Hilliard, …) qui étaient auparavant déconnectés. Tous ces exemples (et probablement beaucoup d'autres) sont des cas particuliers de cette classe générale d'équations de Fokker–Planck non-linéaires en champ moyen.

Publié le :
DOI : 10.1016/j.crhy.2006.01.004
Keywords: Generalized Fokker–Planck equations, Vlasov equation, Long-range interactions
Mots-clés : Classe générale d'équations de Fokker–Planck, Équation de Vlasov, Interaction à longue portée

Pierre-Henri Chavanis 1

1 Laboratoire de physique théorique, université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse, France
@article{CRPHYS_2006__7_3-4_318_0,
     author = {Pierre-Henri Chavanis},
     title = {Nonlinear mean-field {Fokker{\textendash}Planck} equations and their applications in physics, astrophysics and biology},
     journal = {Comptes Rendus. Physique},
     pages = {318--330},
     publisher = {Elsevier},
     volume = {7},
     number = {3-4},
     year = {2006},
     doi = {10.1016/j.crhy.2006.01.004},
     language = {en},
}
TY  - JOUR
AU  - Pierre-Henri Chavanis
TI  - Nonlinear mean-field Fokker–Planck equations and their applications in physics, astrophysics and biology
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 318
EP  - 330
VL  - 7
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.01.004
LA  - en
ID  - CRPHYS_2006__7_3-4_318_0
ER  - 
%0 Journal Article
%A Pierre-Henri Chavanis
%T Nonlinear mean-field Fokker–Planck equations and their applications in physics, astrophysics and biology
%J Comptes Rendus. Physique
%D 2006
%P 318-330
%V 7
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2006.01.004
%G en
%F CRPHYS_2006__7_3-4_318_0
Pierre-Henri Chavanis. Nonlinear mean-field Fokker–Planck equations and their applications in physics, astrophysics and biology. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 318-330. doi : 10.1016/j.crhy.2006.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.004/

[1] A. Pais Subtle is the Lord, Oxford Univ. Press, New York, 1982

[2] C. Tsallis J. Stat. Phys., 52 (1988), p. 479

[3] P.-H. Chavanis; P.-H. Chavanis; P.-H. Chavanis; P.-H. Chavanis Physica A, 68 (2003), p. 036108

[4] G. Kaniadakis Physica A, 296 (2001), p. 405

[5] A.R. Plastino; A. Plastino Physica A, 222 (1995), p. 347

[6] E. Keller; L.A. Segel J. Theor. Biol., 26 (1970), p. 399

[7] P.-H. Chavanis Statistical mechanics of two-dimensional vortices and stellar systems (T. Dauxois; S. Ruffo; E. Arimondo; M. Wilkens, eds.), Dynamics and Thermodynamics of Systems with Long Range Interactions, Lecture Notes in Phys., Springer-Verlag, Berlin/New York, 2002 | arXiv

[8] R. Robert; J. Sommeria; R. Robert; C. Rosier; P.-H. Chavanis Phys. Rev. Lett., 69 (1992), p. 2776

[9] P.-H. Chavanis; J. Sommeria; R. Robert; P.-H. Chavanis Mon. Not. R. Astron. Soc., 471 (1996), p. 385

[10] H. Brands; P.-H. Chavanis; J. Sommeria; R. Pasmanter Phys. Fluids, 11 (1999), p. 3465

[11] P.-H. Chavanis | arXiv

[12] P.-H. Chavanis; P. Laurençot; M. Lemou Physica A, 341 (2004), p. 145

[13] T.D. Frank Phys. Lett. A, 290 (2001), p. 93

[14] L. Borland Phys. Rev. E, 57 (1998), p. 6634

[15] P.-H. Chavanis; C. Rosier; C. Sire; C. Sire; P.-H. Chavanis; C. Sire; P.-H. Chavanis; P.-H. Chavanis; C. Sire; C. Sire; P.-H. Chavanis; J. Sopik; C. Sire; P.-H. Chavanis Phys. Rev. E, 66 (2002), p. 036105

[16] P.-H. Chavanis; C. Sire Phys. Rev. E, 69 (2004), p. 016116

[17] P.-H. Chavanis; M. Ribot; C. Rosier; C. Sire Banach Center Publ., 66 (2004), p. 103

[18] P.-H. Chavanis; C. Sire | arXiv

[19] P.-H. Chavanis; J. Vatteville; F. Bouchet Eur. Phys. J. B, 46 (2005), p. 61

[20] J. Sopik; C. Sire; P.-H. Chavanis | arXiv

[21] R. Robert; J. Miller; R. Robert; J. Sommeria; P.-H. Chavanis; J. Sommeria J. Fluid Mech., 311 (1990), p. 575

[22] R. Ellis; K. Haven; B. Turkington Nonlinearity, 15 (2002), p. 239

[23] P.-H. Chavanis; P.-H. Chavanis Physica D, Proceedings of the Workshop on “Interdisciplinary Aspects of Turbulence” at Ringberg Castle, Tegernsee, Germany, 200, Max-Planck Institut für Astrophysik, 2005, p. 257 | arXiv

[24] P.-H. Chavanis Physica A, 359 (2006), p. 177

[25] J. Binney, S. Tremaine, Galactic Dynamics, Princeton Series in Astrophysics, 1987

[26] D. Lynden-Bell; P.-H. Chavanis; J. Sommeria Mon. Not. R. Astron. Soc., 136 (1967), p. 101

[27] S. Tremaine; M. Hénon; D. Lynden-Bell; P.-H. Chavanis; C. Sire; P.-H. Chavanis Physica A, 219, 1986, p. 285 (Astron. Astrophys., in press) | arXiv

[28] P. Debye; E. Hückel Phys. Z., 24 (1925), p. 305

[29] W. Jäger; S. Luckhaus Trans. Amer. Math. Soc., 329 (1992), p. 819

[30] A. Gamba et al. Phys. Rev. Lett., 90 (2003), p. 118101

  • Sara Bicego; Dante Kalise; Grigorios A. Pavliotis Computation and control of unstable steady states for mean field multiagent systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 481 (2025) no. 2311 | DOI:10.1098/rspa.2024.0476
  • Ling Xue; Min Zhang; Kun Zhao Stability of aerostatic equilibria in porous medium flows, Journal of Differential Equations, Volume 378 (2024), p. 678 | DOI:10.1016/j.jde.2023.10.018
  • M H Heydari; H Azin; S E Hosseini An operational matrix strategy for time fractional Fokker-Planck equation in an unbounded space domain, Physica Scripta, Volume 99 (2024) no. 6, p. 065250 | DOI:10.1088/1402-4896/ad4a9f
  • Zi-Ge Wu; Chun-Fu Wei An excellent scheme for the couple-Higgs equation, Thermal Science, Volume 28 (2024) no. 4 Part B, p. 3523 | DOI:10.2298/tsci2404523w
  • Mohammad Mahdi Moayeri; Mohammad Hemami Solving Partial Differential Equations by LS-SVM, Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines (2023), p. 171 | DOI:10.1007/978-981-19-6553-1_8
  • Gabriela Marinoschi A semigroup approach to a reaction–diffusion system with cross-diffusion, Nonlinear Analysis, Volume 230 (2023), p. 113222 | DOI:10.1016/j.na.2023.113222
  • Qingqing Liu; Xiaoli Wu Stability of rarefaction wave for viscous vasculogenesis model, Discrete and Continuous Dynamical Systems - B, Volume 27 (2022) no. 12, p. 7089 | DOI:10.3934/dcdsb.2022034
  • Daniel Adams; Manh Hong Duong; Gonçalo dos Reis Entropic Regularization of NonGradient Systems, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 4, p. 4495 | DOI:10.1137/21m1414668
  • Bing Li; Fang Wang; Kun Zhao Large time dynamics of 2D semi-dissipative Boussinesq equations, Nonlinearity, Volume 33 (2020) no. 5, p. 2481 | DOI:10.1088/1361-6544/ab74b1
  • Jesús Fuentes; José Luis López; Octavio Obregón Generalized Fokker-Planck equations derived from nonextensive entropies asymptotically equivalent to Boltzmann-Gibbs, Physical Review E, Volume 102 (2020) no. 1 | DOI:10.1103/physreve.102.012118
  • Pierre-Henri Chavanis The Generalized Stochastic Smoluchowski Equation, Entropy, Volume 21 (2019) no. 10, p. 1006 | DOI:10.3390/e21101006
  • Pierre-Henri Chavanis Generalized Euler, Smoluchowski and Schrödinger equations admitting self-similar solutions with a Tsallis invariant profile, The European Physical Journal Plus, Volume 134 (2019) no. 7 | DOI:10.1140/epjp/i2019-12706-y
  • A. V. Shapovalov One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift, Russian Physics Journal, Volume 60 (2018) no. 12, p. 2063 | DOI:10.1007/s11182-018-1327-4
  • Alireza Heidari; Seyedali Vedad; Mohammadali Ghorbani A New Approach to Time-Dependent Solutions to the Non-Linear Fokker-Planck Equations Related to Arbitrary Functions of Tsallis Entropy: A Mathematical Study and Investigation, Journal of Modern Physics, Volume 03 (2012) no. 05, p. 420 | DOI:10.4236/jmp.2012.35058
  • Pierre-Henri Chavanis A stochastic Keller–Segel model of chemotaxis, Communications in Nonlinear Science and Numerical Simulation, Volume 15 (2010) no. 1, p. 60 | DOI:10.1016/j.cnsns.2008.09.002
  • Roumen Tsekov Nonlinear Theory of Quantum Brownian Motion, International Journal of Theoretical Physics, Volume 48 (2009) no. 1, p. 85 | DOI:10.1007/s10773-008-9784-0
  • P. H. Chavanis; L. Delfini Dynamical stability of systems with long-range interactions: application of the Nyquist method to the HMF model, The European Physical Journal B, Volume 69 (2009) no. 3, p. 389 | DOI:10.1140/epjb/e2009-00180-9
  • Pierre-Henri Chavanis Hamiltonian and Brownian systems with long-range interactions: III. The BBGKY hierarchy for spatially inhomogeneous systems, Physica A: Statistical Mechanics and its Applications, Volume 387 (2008) no. 4, p. 787 | DOI:10.1016/j.physa.2007.10.026
  • P. H. Chavanis Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations, The European Physical Journal B, Volume 62 (2008) no. 2, p. 179 | DOI:10.1140/epjb/e2008-00142-9
  • Pierre-Henri Chavanis; Clément Sire Logotropic distributions, Physica A: Statistical Mechanics and its Applications, Volume 375 (2007) no. 1, p. 140 | DOI:10.1016/j.physa.2006.08.076
  • Pierre-Henri Chavanis; Clément Sire Kinetic and hydrodynamic models of chemotactic aggregation, Physica A: Statistical Mechanics and its Applications, Volume 384 (2007) no. 2, p. 199 | DOI:10.1016/j.physa.2007.05.069
  • P. H. Chavanis Phase separation of bacterial colonies in a limit of high degradation, The European Physical Journal B, Volume 54 (2006) no. 4, p. 525 | DOI:10.1140/epjb/e2007-00021-y

Cité par 22 documents. Sources : Crossref

Commentaires - Politique