Comptes Rendus
Statistique
Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1075-1080.

Étant donné un champ aléatoire fonctionnel, stationnaire (Zi=(Xi,Yi),iNN, N>0) à valeurs dans F×R, où F est un espace semi-métrique, de dimension éventuellement infinie. Dans cette Note, on se propose d'étudier la covariation spatiale des deux variables Xi et Yi via l'estimation non paramétrique des quantiles conditionnels de Yi sachant Xi. Nous construisons un estimateur à noyau pour ce modèle non paramétrique spatial et nous établissons sa vitesse de convergence presque complètement.

Consider Zi=(Xi,Yi), iNN be a F×R-valued measurable strictly stationary spatial process, where F is a semi-metric space. We study a kernel estimator of conditional quantiles of the univariate response variable Yi given the functional variable Xi. The main aim of this Note is to prove the almost complete convergence (with rate) of this estimate.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.012

Ali Laksaci 1 ; Fouzia Maref 2

1 Laboratoire de mathématiques, université Djilali-Liabes, BP 89, Sidi Bel Abbes, 22000, Algérie
2 Université de Saida, Saida, 20000, Algérie
@article{CRMATH_2009__347_17-18_1075_0,
     author = {Ali Laksaci and Fouzia Maref},
     title = {Estimation non param\'etrique de quantiles conditionnels pour des variables fonctionnelles spatialement d\'ependantes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1075--1080},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.012},
     language = {fr},
}
TY  - JOUR
AU  - Ali Laksaci
AU  - Fouzia Maref
TI  - Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1075
EP  - 1080
VL  - 347
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2009.06.012
LA  - fr
ID  - CRMATH_2009__347_17-18_1075_0
ER  - 
%0 Journal Article
%A Ali Laksaci
%A Fouzia Maref
%T Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes
%J Comptes Rendus. Mathématique
%D 2009
%P 1075-1080
%V 347
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2009.06.012
%G fr
%F CRMATH_2009__347_17-18_1075_0
Ali Laksaci; Fouzia Maref. Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1075-1080. doi : 10.1016/j.crma.2009.06.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.012/

[1] L. Anselin; R.J.G.M. Florax New Directions in Spatial Econometrics, Springer, Berlin, 1995

[2] M. Carbon; C. Francq; L.T. Tran Kernel regression estimation for random fields, J. Statist. Plann. Inference, Volume 137 (2007), pp. 778-798

[3] N.A. Cressie Statistics for Spatial Data, Wiley, New York, 1991

[4] R.M. Crujeiras, W.G. Manteiga, A. Laksaci, E. Ould Saïd, Asymptotic properties for an L1-norm kernel estimator of the spatial quantile regression for functional data. Technical report, no. 393, Mars 2009, LMPA, Université du Littoral Cote d'Opale, submitted for publication

[5] S. Dabo-Niang; A.F. Yao Kernel regression estimation for continuous spatial processes, Math. Methods Statist., Volume 16 (2007), pp. 298-317

[6] S. Dabo-Niang, A. Laksaci, Spatial conditional quantile regression: Weak consistency of a kernel estimate, 2009, submitted for publication

[7] M. Ezzahrioui; E. Ould-Said Asymptotic results of the kernel estimator of the conditional quantile in the normed space under α-mixing hypothesis, Comm. Statist. Theory Methods, Volume 37 (2008), pp. 2735-2759

[8] F. Ferraty; Ph. Vieu Nonparametric Functional Data Analysis, Springer Series in Statistics, Springer, New York, 2006

[9] F. Ferraty; A. Rabhi; Ph. Vieu Conditional quantiles for functionally dependent data with application to the climatic El Nino Phenomenon, Sankhyia, Volume 67 (2005), pp. 378-399

[10] F. Ferraty; A. Laksaci; Ph. Vieu Estimating some characteristics of the conditional distribution in nonparametric functional models, Stat. Inference Stoch. Process., Volume 9 (2006), pp. 47-76

[11] X. Guyon Random Fields on a Network – Modeling, Statistics, and Applications, Springer, New York, 1995

[12] M. Hallin, Z. Lu, K. Yu, Local linear spatial quantile regression, Bernoulli (2009), in press

[13] A. Laksaci, E. Ould Saïd, Kernel estimator for the spatial regression quantile : L1-approach. Technical report, no. 392, Mars 2009, LMPA, Université du Littoral Côte d'Opale, submitted for publication

[14] A. Laksaci; M. Lemdani; E. Ould-Saïd A generalized L1-approach for a kernel estimator of conditional quantile with functional regressors: Consistency and asymptotic normality, Statist. Probab. Lett., Volume 79 (2009), pp. 1065-1073

[15] M. Lemdani; E. Ould-Saïd; N. Poulin Asymptotic properties of a conditional quantile estimator with randomly truncated data, J. Multivariate Anal., Volume 100 (2009), pp. 546-559

[16] J. Li; L.T. Tran Nonparametric estimation of conditional expectation, J. Statist. Plann. Inference, Volume 139 (2009), pp. 164-175

[17] B. Ripley Spatial Statistics, Wiley, New York, 1981

[18] M. Samanta Non-parametric estimation of conditional quantiles, Statist. Probab. Lett., Volume 7 (1989), pp. 407-412

[19] C. J Stone Consistent nonparametric regression, Discuss. Ann. Statist., Volume 5 (1977), pp. 595-645

[20] W. Stute Conditional empirical processes, Ann. Statist., Volume 14 (1986), pp. 638-647

[21] L.T. Tran Kernel density estimation on random fields, J. Multivariate Anal., Volume 34 (1990), pp. 37-53

[22] E. Youndjé, Estimation non paramétrique de la densité conditionnelle par la méthode du noyau, Thèse de Doctarat, Université de Rouen, 1993

Cité par Sources :

Commentaires - Politique