[Continuation analytique d'applications holomorphes]
Soient D un domaine de , , et une application holomorphe. Soit un ouvert tel que est une hypersurface relativement fermée dans U, connexe, lisse, analytique réelle et de type fini (au sens de D'Angelo). Supposons que l'ensemble des points limites est contenu dans une hypersurface, fermée, lisse, algébrique réelle de type fini, où est un ouvert de . Nous montrons que si f se prolonge continûment sur une partie ouverte de M, alors elle se prolonge holomorphiquement au voisinage de chaque point de M. Notons qu'ici la compacité de n'est pas exigée.
Let D be a domain in , , and be a holomorphic map. Let be an open set such that is in U a relatively closed, connected, smooth real-analytic hypersurface of finite type (in the sense of D'Angelo). Suppose that the cluster set is contained in a closed, smooth real-algebraic hypersurface of finite type, where is an open set in . It is shown that if f extends continuously to some open piece of M, then it extends holomorphically to a neighborhood of each point of M. Note that here the compactness of is not required.
Accepté le :
Publié le :
Besma Ayed 1 ; Nabil Ourimi 2
@article{CRMATH_2009__347_17-18_1011_0, author = {Besma Ayed and Nabil Ourimi}, title = {Analytic continuation of holomorphic mappings}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1016}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.001}, language = {en}, }
Besma Ayed; Nabil Ourimi. Analytic continuation of holomorphic mappings. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1011-1016. doi : 10.1016/j.crma.2009.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.001/
[1] Images of real hypersurfaces under holomorphic mappings, J. Differential Geom., Volume 36 (1992), pp. 75-88
[2] Analytic sets extending the graphs of holomorphic mappings, J. Geom. Anal., Volume 14 (2004) no. 2, pp. 231-239
[3] Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J., Volume 44 (1995), pp. 1089-1126
[4] Regularity of continuous CR maps in arbitrary dimension, Michigan Math. J., Volume 51 (2003) no. 1, pp. 111-140
[5] Schwarz reflection principle in complex spaces of dimension 2, Comm. Partial Differential Equations, Volume 21 (1996) no. 11–12, pp. 1781-1828
[6] On wedge extendability of CR-meromorphic functions, Math. Z., Volume 241 (2002), pp. 485-512
[7] Analytic sets and the boundary regularity of CR-mappings, Proc. AMS, Volume 129 (2001), pp. 2623-2632
[8] Analytic continuation of germs of holomorphic mappings, Michigan Math. J., Volume 47 (2000), pp. 133-149
[9] On boundary regularity of proper holomorphic mappings, Math. Z., Volume 242 (2002), pp. 517-528
[10] A local extension theorem for proper holomorphic mappings in , J. Geom. Anal., Volume 13 (2003) no. 4, pp. 697-714
[11] Extension of holomorphic maps between real hypersurfaces of different dimensions, Ann. Inst. Fourier, Grenoble, Volume 57 (2007) no. 6, pp. 2063-2080
Cité par Sources :
Commentaires - Politique