[Propriétés spectrales et principe d'absorption limite à faible énergie pour un modèle mathématique d'interaction faible : La désintégration d'un boson]
We study the spectral properties of a Hamiltonian describing the weak decay of spin 1 massive bosons into the full family of leptons. We prove that the considered Hamiltonian is self-adjoint, with a unique ground state and we derive a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold, for a sufficiently small coupling constant. As a corollary, we prove absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval.
Nous étudions les propriétés spectrales d'un hamiltonien qui décrit la désintégration du boson massif
Accepté le :
Publié le :
Jean-Marie Barbaroux 1, 2 ; Jean-Claude Guillot 3
@article{CRMATH_2009__347_17-18_1087_0, author = {Jean-Marie Barbaroux and Jean-Claude Guillot}, title = {Limiting absorption principle at low energies for a mathematical model of weak interaction: {The} decay of a boson}, journal = {Comptes Rendus. Math\'ematique}, pages = {1087--1092}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.014}, language = {en}, }
TY - JOUR AU - Jean-Marie Barbaroux AU - Jean-Claude Guillot TI - Limiting absorption principle at low energies for a mathematical model of weak interaction: The decay of a boson JO - Comptes Rendus. Mathématique PY - 2009 SP - 1087 EP - 1092 VL - 347 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2009.07.014 LA - en ID - CRMATH_2009__347_17-18_1087_0 ER -
%0 Journal Article %A Jean-Marie Barbaroux %A Jean-Claude Guillot %T Limiting absorption principle at low energies for a mathematical model of weak interaction: The decay of a boson %J Comptes Rendus. Mathématique %D 2009 %P 1087-1092 %V 347 %N 17-18 %I Elsevier %R 10.1016/j.crma.2009.07.014 %G en %F CRMATH_2009__347_17-18_1087_0
Jean-Marie Barbaroux; Jean-Claude Guillot. Limiting absorption principle at low energies for a mathematical model of weak interaction: The decay of a boson. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1087-1092. doi : 10.1016/j.crma.2009.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.014/
[1] A mathematical model for the Fermi weak interactions, Cubo, Volume 9 (2007) no. 2, pp. 37-57
[2]
[3] Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons
[4] Spectral theory for the standard model of non-relativistic QED, Comm. Math. Phys., Volume 283 (2008) no. 3, pp. 613-646
[5] Quantum Field Theory and Statistical Mechanics, Birkhäuser, Boston Inc., Boston, MA, 1985 (Expositions, Reprint of articles published in 1969–1977)
[6] Gauge Theory of Weak Interactions, Springer, Berlin, 1989
[7] Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975
[8] The conjugate operator method for locally regular Hamiltonians, J. Operator Theory, Volume 38 (1997) no. 2, pp. 297-322
[9] The Quantum Theory of Fields, vol. I, Foundations, Cambridge University Press, Cambridge, 2005
[10] The Quantum Theory of Fields, vol. II, Modern Applications, Cambridge University Press, Cambridge, 2005
- Local decay for weak interactions with massless particles, Journal of Spectral Theory, Volume 9 (2019) no. 2, pp. 453-512 | DOI:10.4171/jst/253 | Zbl:1508.81861
- Spectral properties for Hamiltonians of weak interactions, Spectral theory and mathematical physics. Proceedings of the conference, Santiago, Chile, November 2014, Basel: Birkhäuser/Springer, 2016, pp. 11-36 | DOI:10.1007/978-3-319-29992-1_2 | Zbl:6981828
- Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons
. II, Annales Henri Poincaré, Volume 12 (2011) no. 8, pp. 1539-1570 | DOI:10.1007/s00023-011-0114-3 | Zbl:1235.81121 - Spectral theory for a mathematical model of the weak interaction. I: The decay of the intermediate vector bosons
, Advances in Mathematical Physics, Volume 2009 (2009), p. 52 (Id/No 978903) | DOI:10.1155/2009/978903 | Zbl:1201.81106
Cité par 4 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier