[Estimations logarithmiques optimales dans les espaces de Hardy–Sobolev
We prove sharp logarithmic estimates of optimal type in the Hardy–Sobolev spaces
On montre des résultats de stabilité logarithmique de type optimal dans les espaces de Hardy–Sobolev
Accepté le :
Publié le :
Slim Chaabane 1 ; Imed Feki 1
@article{CRMATH_2009__347_17-18_1001_0, author = {Slim Chaabane and Imed Feki}, title = {Optimal logarithmic estimates in {Hardy{\textendash}Sobolev} spaces $ {H}^{k,\infty }$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1001--1006}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.018}, language = {en}, }
Slim Chaabane; Imed Feki. Optimal logarithmic estimates in Hardy–Sobolev spaces $ {H}^{k,\infty }$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1001-1006. doi : 10.1016/j.crma.2009.07.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.018/
[1] On the recovery of functions from pointwise boundary values in a Hardy–Sobolev class of the disk, J. Comput. Appl. Math., Volume 46 (1993), pp. 255-269
[2] Analyse Fonctionnelle, Masson, Paris, 1983
[3] Logarithmic stability estimates for a Robin coefficient in 2D Laplace inverse problems, Inverse Problems, Volume 20 (2004), pp. 47-59
[4] Identification of Robin coefficients by the means of boundary measurements, Inverse Problems, Volume 15 (1999), pp. 1425-1438
[5] Theory of
[6] Analytic extensions and Cauchy-type inverse problems on annular domains: Stability results, J. Inv. Ill-Posed Problems, Volume 14 (2006) no. 2, pp. 189-204
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier