[Diffusion par un univers-brane de Minkowski]
Nous étudions l'équation des ondes gravitationnelles dans le modèle de cosmologie branaire de Randall–Sundrum. Le problème de Cauchy global est bien posé dans l'espace des champs d'énergie finie. Les solutions se décomposent de façon unique en la somme d'une onde libre sans masse se propageant sur la brane de Minkowski (le graviton) et d'un somme continue de champs massifs de Klein–Gordon (la tour de Kaluza–Klein). Le résolvant tronqué est explicitement exprimé à l'aide de fonctions de Hankel. Nous faisons l'analyse asymptotique complète des tours de Kaluza–Klein : estimations , , estimations globales de type Strichartz, existence et complétude des opérateurs d'ondes, calcul de la matrice de diffusion, détermination des résonances sur la surface de Riemann du logarithme.
We study the wave equation for the gravitational waves in the Randall–Sundrum brane cosmology model. The global Cauchy problem is well posed in the functional framework associated with the energy. The solutions are the sum of a free massless wave propagating on the brane (the graviton), and a superposition of massive Klein–Gordon waves (the Kaluza–Klein tower). We compute the kernel of the truncated resolvent in term of Hankel functions. We develop the complete asymptotic analysis of the Kaluza–Klein towers: and estimates, global Strichartz estimates, existence and asymptotic completeness of the wave operators, computation of the scattering matrix, determination of the resonances on the logarithmic Riemann surface.
Accepté le :
Publié le :
Alain Bachelot 1
@article{CRMATH_2009__347_21-22_1243_0, author = {Alain Bachelot}, title = {Scattering by a {Minkowski} brane world}, journal = {Comptes Rendus. Math\'ematique}, pages = {1243--1248}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.004}, language = {en}, }
Alain Bachelot. Scattering by a Minkowski brane world. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1243-1248. doi : 10.1016/j.crma.2009.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.004/
[1] A. Bachelot, Wave propagation and scattering for the RS2 brane cosmology model, J. Hyperbolic Differ. Equ., , in press | arXiv
[2] Decay estimates for the Klein–Gordon equation, Comm. Partial Differential Equations, Volume 17 (1992), pp. 1111-1139
[3] Scattering theory with two Hilbert spaces, J. Funct. Anal., Volume 1 (1967), pp. 342-369
[4] An alternative to compactification, Phys. Rev. Lett., Volume 83 (1999) no. 23, pp. 4690-4693
[5] Ringing the Randall–Sundrum braneworld: Metastable gravity wave bound states, Phys. Rev. D, Volume 72 (2005) no. 6, p. 066002
[6] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977), pp. 705-714
[7] decay rates for homogeneous wave equations, Math. Z., Volume 120 (1971), pp. 93-106
Cité par Sources :
Commentaires - Politique