Comptes Rendus
Partial Differential Equations/Mathematical Physics
Scattering by a Minkowski brane world
[Diffusion par un univers-brane de Minkowski]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1243-1248.

Nous étudions l'équation des ondes gravitationnelles dans le modèle de cosmologie branaire de Randall–Sundrum. Le problème de Cauchy global est bien posé dans l'espace des champs d'énergie finie. Les solutions se décomposent de façon unique en la somme d'une onde libre sans masse se propageant sur la brane de Minkowski (le graviton) et d'un somme continue de champs massifs de Klein–Gordon (la tour de Kaluza–Klein). Le résolvant tronqué est explicitement exprimé à l'aide de fonctions de Hankel. Nous faisons l'analyse asymptotique complète des tours de Kaluza–Klein : estimations L1L, L2L, estimations globales Lp de type Strichartz, existence et complétude des opérateurs d'ondes, calcul de la matrice de diffusion, détermination des résonances sur la surface de Riemann du logarithme.

We study the wave equation for the gravitational waves in the Randall–Sundrum brane cosmology model. The global Cauchy problem is well posed in the functional framework associated with the energy. The solutions are the sum of a free massless wave propagating on the brane (the graviton), and a superposition of massive Klein–Gordon waves (the Kaluza–Klein tower). We compute the kernel of the truncated resolvent in term of Hankel functions. We develop the complete asymptotic analysis of the Kaluza–Klein towers: L1L and L2L estimates, global Lp Strichartz estimates, existence and asymptotic completeness of the wave operators, computation of the scattering matrix, determination of the resonances on the logarithmic Riemann surface.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.004

Alain Bachelot 1

1 Université de Bordeaux, CNRS, institut de mathématiques, 33405 Talence cedex, France
@article{CRMATH_2009__347_21-22_1243_0,
     author = {Alain Bachelot},
     title = {Scattering by a {Minkowski} brane world},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1243--1248},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.004},
     language = {en},
}
TY  - JOUR
AU  - Alain Bachelot
TI  - Scattering by a Minkowski brane world
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1243
EP  - 1248
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.004
LA  - en
ID  - CRMATH_2009__347_21-22_1243_0
ER  - 
%0 Journal Article
%A Alain Bachelot
%T Scattering by a Minkowski brane world
%J Comptes Rendus. Mathématique
%D 2009
%P 1243-1248
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.09.004
%G en
%F CRMATH_2009__347_21-22_1243_0
Alain Bachelot. Scattering by a Minkowski brane world. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1243-1248. doi : 10.1016/j.crma.2009.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.004/

[1] A. Bachelot, Wave propagation and scattering for the RS2 brane cosmology model, J. Hyperbolic Differ. Equ., , in press | arXiv

[2] V. Georgiev Decay estimates for the Klein–Gordon equation, Comm. Partial Differential Equations, Volume 17 (1992), pp. 1111-1139

[3] T. Kato Scattering theory with two Hilbert spaces, J. Funct. Anal., Volume 1 (1967), pp. 342-369

[4] L. Randall; R. Sundrum An alternative to compactification, Phys. Rev. Lett., Volume 83 (1999) no. 23, pp. 4690-4693

[5] S.S. Seahra Ringing the Randall–Sundrum braneworld: Metastable gravity wave bound states, Phys. Rev. D, Volume 72 (2005) no. 6, p. 066002

[6] R.S. Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977), pp. 705-714

[7] W. von Wahl Lp decay rates for homogeneous wave equations, Math. Z., Volume 120 (1971), pp. 93-106

Cité par Sources :

Commentaires - Politique