[Solutions continues en la viscosité pour les équations d'Euler ou de Navier–Stokes avec des conditions aux limites de type Navier]
Pourvu que les données soient suffisamment régulières, il existe , et famille unique de solutions fortes, locales en temps sur et dépendant continûment de ν, pour les problèmes d'Euler ou de Navier–Stokes. Ces solutions vérifient des conditions aux limites de type celles de Navier.
Provided the initial velocity and the external body force are sufficiently smooth, there exist , and a unique continuous family of strong solutions () of the Euler or Navier–Stokes initial–boundary value problem on the time interval . The solutions of the Navier–Stokes problem satisfy a Navier-type boundary condition.
Accepté le :
Publié le :
Hamid Bellout 1 ; Jiří Neustupa 2 ; Patrick Penel 3
@article{CRMATH_2009__347_19-20_1141_0, author = {Hamid Bellout and Ji\v{r}{\'\i} Neustupa and Patrick Penel}, title = {On viscosity-continuous solutions of the {Euler} and {Navier{\textendash}Stokes} equations with a {Navier-type} boundary condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {1141--1146}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.09.007}, language = {en}, }
TY - JOUR AU - Hamid Bellout AU - Jiří Neustupa AU - Patrick Penel TI - On viscosity-continuous solutions of the Euler and Navier–Stokes equations with a Navier-type boundary condition JO - Comptes Rendus. Mathématique PY - 2009 SP - 1141 EP - 1146 VL - 347 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2009.09.007 LA - en ID - CRMATH_2009__347_19-20_1141_0 ER -
%0 Journal Article %A Hamid Bellout %A Jiří Neustupa %A Patrick Penel %T On viscosity-continuous solutions of the Euler and Navier–Stokes equations with a Navier-type boundary condition %J Comptes Rendus. Mathématique %D 2009 %P 1141-1146 %V 347 %N 19-20 %I Elsevier %R 10.1016/j.crma.2009.09.007 %G en %F CRMATH_2009__347_19-20_1141_0
Hamid Bellout; Jiří Neustupa; Patrick Penel. On viscosity-continuous solutions of the Euler and Navier–Stokes equations with a Navier-type boundary condition. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1141-1146. doi : 10.1016/j.crma.2009.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.007/
[1] Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., Volume 40 (1972), pp. 769-790
[2] H. Beirão da Veiga, F. Crispo, Sharp inviscid limit results under Navier type boundary condition. An theory, J. Math. Fluid Mech., in press
[3] A Navier–Stokes approximation of the 3D Euler equation with the zero flux on the boundary, J. Math. Fluid Mech., Volume 10 (2008), pp. 531-553
[4] On the Navier–Stokes equations with boundary conditions based on vorticity, Math. Nachr., Volume 269–270 (2004), pp. 59-72
[5] H. Bellout, J. Neustupa, P. Penel, On a ν-continuous family of strong solutions to the Euler or Navier–Stokes equations with the Navier-type boundary condition, preprint, 2009
[6] Remarks on the Euler equation, J. Funct. Anal., Volume 15 (1974), pp. 341-363
[7] The Navier–Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries, December 2008 (preprint) | arXiv
[8] T. Kato, Remarks on zero viscosity limit for non-stationary Navier–Stokes flows with boundary, in: S.S. Chern (Ed.), Seminar on Nonlinear PDE, MSRI, 1984
[9] Non blow-up of the 3D Euler equations for a class of three dimensional initial data in cylindrical domains, Methods Appl. Anal., Volume 11 (2004) no. 4, pp. 605-634
[10] On the Euler equations of incompressible perfect fluids, J. Funct. Anal., Volume 20 (1975), pp. 32-43
[11] On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., Volume 60 (2007), pp. 1027-1055
Cité par Sources :
Commentaires - Politique