[Solutions fortes vérifiant des conditions aux limites de Navier pour les équations de Navier–Stokes non stationnaires, et la question de leur limite inviscide]
Dans cette Note, nous démontrons l'existence locale en temps de solutions fortes pour les équations de Navier–Stokes descriptives de fluides visqueux incompressibles, dans un domaine borné de , général et suffisamment régulier, avec des conditions aux limites non homogènes de Navier bien choisies. Ces solutions sont construites avec la même structure remarquable d'approximation de la solution du problème d'Euler que celles obtenues avec des conditions d'imperméabilité généralisées ou des conditions de type celles de Navier : structure permettant de traiter complètement la question de la limite inviscide.
In this Note, we prove the existence of strong solutions to the Navier–Stokes equations for incompressible viscous fluids in a general regular bounded domain of on a “short” time interval , independent of the viscosity and of the friction between the fluid and the boundary. The solutions to the Navier–Stokes problem satisfy the inhomogeneous Navier's boundary condition and they reveal a remarkable structure of approximation of the solution to the Euler problem, which enables us to solve completely the question of the inviscid limit of the family of obtained solutions on the time interval .
Accepté le :
Publié le :
Jiří Neustupa 1 ; Patrick Penel 2
@article{CRMATH_2010__348_19-20_1093_0, author = {Ji\v{r}{\'\i} Neustupa and Patrick Penel}, title = {Local in time strong solvability of the non-steady {Navier{\textendash}Stokes} equations with {Navier's} boundary condition and the question of the inviscid limit}, journal = {Comptes Rendus. Math\'ematique}, pages = {1093--1097}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.021}, language = {en}, }
TY - JOUR AU - Jiří Neustupa AU - Patrick Penel TI - Local in time strong solvability of the non-steady Navier–Stokes equations with Navier's boundary condition and the question of the inviscid limit JO - Comptes Rendus. Mathématique PY - 2010 SP - 1093 EP - 1097 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.09.021 LA - en ID - CRMATH_2010__348_19-20_1093_0 ER -
%0 Journal Article %A Jiří Neustupa %A Patrick Penel %T Local in time strong solvability of the non-steady Navier–Stokes equations with Navier's boundary condition and the question of the inviscid limit %J Comptes Rendus. Mathématique %D 2010 %P 1093-1097 %V 348 %N 19-20 %I Elsevier %R 10.1016/j.crma.2010.09.021 %G en %F CRMATH_2010__348_19-20_1093_0
Jiří Neustupa; Patrick Penel. Local in time strong solvability of the non-steady Navier–Stokes equations with Navier's boundary condition and the question of the inviscid limit. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1093-1097. doi : 10.1016/j.crma.2010.09.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.021/
[1] Sharp inviscid limit results under Navier type boundary condition. An theory, J. Math. Fluid Mech., Volume 12 (2010), pp. 397-411
[2] A Navier–Stokes approximation of the 3D Euler equation with the zero flux on the boundary, J. Math. Fluid Mech., Volume 10 (2008), pp. 531-553
[3] On a ν-continuous family of strong solutions to the Euler or Navier–Stokes equations with the Navier-type boundary condition, Discrete Contin. Dynam. Systems, Volume 27 (2010) no. 4, pp. 1353-1373
[4] The Navier–Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries, Acta Math. Sci., Volume 29 (2009) no. 4, pp. 919-948
[5] G.Q. Chen, Z. Qian, A study of the Navier–Stokes equations with the kinematic and Navier's boundary conditions, Preprint, December 2008, . | arXiv
[6] Inviscid limit for the Navier–Stokes equations with Navier friction boundary condition, Nonlinearity, Volume 19 (2006) no. 4, pp. 899-918
[7] Remarks on zero viscosity limit for non-stationary Navier–Stokes flows with boundary (S.S. Chern, ed.), Seminar on Nonlinear PDE, MSRI, vol. 2, Springer, 1984, pp. 85-98
[8] J. Neustupa, P. Penel, On the local in time existence of strong solutions of the Navier–Stokes equations with Navier's boundary condition and the zero viscosity limit, Preprint USTV-2010.
[9] On the Euler equations of incompressible perfect fluids, J. Func. Anal., Volume 20 (1975), pp. 32-43
Cité par Sources :
Commentaires - Politique