[Espaces de Banach dénombrablement déterminés par rapport aux tranches]
Un espace de Banach (séparable) X est appelé un espace SCD si pour tout sous-ensemble A de X qui soit convexe et borné, il existe une suite
A (separable) Banach space X is slicely countably determined if for every convex bounded subset A of X there is a sequence of slices
Accepté le :
Publié le :
Antonio Avilés 1 ; Vladimir Kadets 2 ; Miguel Martín 3 ; Javier Merí 3 ; Varvara Shepelska 2
@article{CRMATH_2009__347_21-22_1277_0, author = {Antonio Avil\'es and Vladimir Kadets and Miguel Mart{\'\i}n and Javier Mer{\'\i} and Varvara Shepelska}, title = {Slicely countably determined {Banach} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1277--1280}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.010}, language = {en}, }
TY - JOUR AU - Antonio Avilés AU - Vladimir Kadets AU - Miguel Martín AU - Javier Merí AU - Varvara Shepelska TI - Slicely countably determined Banach spaces JO - Comptes Rendus. Mathématique PY - 2009 SP - 1277 EP - 1280 VL - 347 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2009.09.010 LA - en ID - CRMATH_2009__347_21-22_1277_0 ER -
%0 Journal Article %A Antonio Avilés %A Vladimir Kadets %A Miguel Martín %A Javier Merí %A Varvara Shepelska %T Slicely countably determined Banach spaces %J Comptes Rendus. Mathématique %D 2009 %P 1277-1280 %V 347 %N 21-22 %I Elsevier %R 10.1016/j.crma.2009.09.010 %G en %F CRMATH_2009__347_21-22_1277_0
Antonio Avilés; Vladimir Kadets; Miguel Martín; Javier Merí; Varvara Shepelska. Slicely countably determined Banach spaces. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1277-1280. doi : 10.1016/j.crma.2009.09.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.010/
[1] A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska, Slicely countably determined Banach spaces, Trans. Amer. Math. Soc., available at http://arXiv.org/abs/0809.2723, in press
[2] Numerical index of Banach spaces and duality, Math. Proc. Cambridge Philos. Soc., Volume 142 (2007), pp. 93-102
[3] The numerical index of a normed space, J. London Math. Soc., Volume 2 (1970), pp. 481-488
[4] Espaces de Banach ayant la propriété de Daugavet, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997), pp. 1291-1994
[5] Banach spaces with the Daugavet property, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 855-873
[6] Narrow operators and rich subspaces of Banach spaces with the Daugavet property, Studia Math., Volume 147 (2001), pp. 269-298
[7] An alternative Daugavet property, J. Math. Anal. Appl., Volume 294 (2004), pp. 158-180
- Some Non-linear Geometrical Properties of Banach Spaces, Descriptive Topology and Functional Analysis, Volume 80 (2014), p. 209 | DOI:10.1007/978-3-319-05224-3_11
Cité par 1 document. Sources : Crossref
Commentaires - Politique