Comptes Rendus
Combinatorics
A minimum degree condition of fractional (k,m)-deleted graphs
[Une condition sur le degré minimal pour qu'un graphe soit (k,m)-effacé fractionnaire]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1223-1226.

Let G be a graph of order n, and let k1 and m1 be two integers. In this paper, we consider the relationship between the minimum degree δ(G) and the fractional (k,m)-deleted graphs. It is proved that if n4k5+2(2k+1)m and δ(G)n2, then G is a fractional (k,m)-deleted graph. Furthermore, we show that the minimum degree condition is sharp in some sense.

Soit G un graphe d'ordre n et k1, m1 deux entiers, nous notons δ(G) le degré minimal de G. Dans cette Note nous montrons que si n4k5+2(2k+1)m et δ(G)n/2 alors G est un graphe (k,m)-effacé fractionnaire. De plus, nous montrons par un exemple que la condition sur le degré minimal ne peut être remplacée par δ(G)(n1)/2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.022

Sizhong Zhou 1

1 School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, People's Republic of China
@article{CRMATH_2009__347_21-22_1223_0,
     author = {Sizhong Zhou},
     title = {A minimum degree condition of fractional $ (k,m)$-deleted graphs},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1223--1226},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.022},
     language = {en},
}
TY  - JOUR
AU  - Sizhong Zhou
TI  - A minimum degree condition of fractional $ (k,m)$-deleted graphs
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1223
EP  - 1226
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.09.022
LA  - en
ID  - CRMATH_2009__347_21-22_1223_0
ER  - 
%0 Journal Article
%A Sizhong Zhou
%T A minimum degree condition of fractional $ (k,m)$-deleted graphs
%J Comptes Rendus. Mathématique
%D 2009
%P 1223-1226
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.09.022
%G en
%F CRMATH_2009__347_21-22_1223_0
Sizhong Zhou. A minimum degree condition of fractional $ (k,m)$-deleted graphs. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1223-1226. doi : 10.1016/j.crma.2009.09.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.022/

[1] J.A. Bondy; U.S.R. Murty Graph Theory with Applications, The Macmillan Press, London, 1976

[2] P. Katerinis Minimun degree of a graph and the existence of k-factors, Proc. Indian Acad. Sci. Math. Sci., Volume 94 (1985), pp. 123-127

[3] G. Liu; L. Zhang Fractional (g,f)-factors of graphs, Acta Math. Sci., Volume 21B (2001) no. 4, pp. 541-545

[4] G. Liu; L. Zhang Toughness and the existence of fractional k-factors of graphs, Discrete Math., Volume 308 (2008), pp. 1741-1748

[5] J. Yu; G. Liu; M. Ma; B. Cao A degree condition for graphs to have fractional factors, Adv. Math. (China), Volume 35 (2006) no. 5, pp. 621-628

[6] S. Zhou, Z. Duan, Binding number and fractional k-factors of graphs, Ars Combin., in press

  • Wei Gao; Wei-fan Wang; Yao-jun Chen Sharp isolated toughness bound for fractional (k,m)-deleted graphs, Acta Mathematicae Applicatae Sinica. English Series, Volume 41 (2025) no. 1, pp. 252-269 | DOI:10.1007/s10255-024-1067-x | Zbl:7965932
  • Wei Gao; Juan Luis García Guirao; Mahmoud Abdel-Aty; Wenfei Xi An independent set degree condition for fractional critical deleted graphs, Discrete and Continuous Dynamical Systems. Series S, Volume 12 (2019) no. 4-5, pp. 877-886 | DOI:10.3934/dcdss.2019058 | Zbl:1418.05101
  • Sizhong Zhou; Lan Xu; Yang Xu A sufficient condition for the existence of a k-factor excluding a given r-factor, Applied Mathematics and Nonlinear Sciences, Volume 2 (2017) no. 1, pp. 13-20 | DOI:10.21042/amns.2017.1.00002 | Zbl:1375.05222
  • Yun Gao; Mohammad Reza Farahani; Wei Gao A neighborhood union condition for fractional (k,n,m)-critical deleted graphs, Transactions on Combinatorics, Volume 6 (2017) no. 1, pp. 13-19 | DOI:10.22108/toc.2017.20355 | Zbl:1463.05435
  • Wei Gao; Li Liang; Tianwei Xu; Juxiang Zhou Degree conditions for fractional (g,f,n,m)-critical deleted graphs and fractional ID-(g,n,f,m)-deleted graphs, Bulletin of the Malaysian Mathematical Sciences Society. Second Series, Volume 39 (2016), p. s315-s330 | DOI:10.1007/s40840-015-0194-1 | Zbl:1339.05308
  • Si Zhong Zhou Binding numbers for fractional ID-k-factor-critical graphs, Acta Mathematica Sinica. English Series, Volume 30 (2014) no. 1, pp. 181-186 | DOI:10.1007/s10114-013-1396-9 | Zbl:1287.05124
  • Sizhong Zhou; Zhiren Sun; Hui Ye A toughness condition for fractional -deleted graphs, Information Processing Letters, Volume 113 (2013) no. 8, p. 255 | DOI:10.1016/j.ipl.2013.01.021
  • Sizhong Zhou A new neighborhood condition for graphs to be fractional (k,m)-deleted graphs, Applied Mathematics Letters, Volume 25 (2012) no. 3, pp. 509-513 | DOI:10.1016/j.aml.2011.09.048 | Zbl:1243.05204
  • Sizhong Zhou; Zhiren Sun; Hongxia Liu A minimum degree condition for fractional ID-[a,b]-factor-critical graphs, Bulletin of the Australian Mathematical Society, Volume 86 (2012) no. 2, pp. 177-183 | DOI:10.1017/s0004972711003467 | Zbl:1252.05182
  • Sizhong Zhou Some new sufficient conditions for graphs to have fractional k-factors, International Journal of Computer Mathematics, Volume 88 (2011) no. 3, pp. 484-490 | DOI:10.1080/00207161003681286 | Zbl:1230.05243
  • Sizhong Zhou A neighbourhood condition for graphs to be fractional (k,m)-deleted graphs, Glasgow Mathematical Journal, Volume 52 (2010) no. 1, pp. 33-40 | DOI:10.1017/s0017089509990139 | Zbl:1260.05124

Cité par 11 documents. Sources : Crossref, zbMATH

This research was supported by Jiangsu Provincial Educational Department (07KJD110048) and was sponsored by Qing Lan Project of Jiangsu Province.

Commentaires - Politique