[Characterization and existence of multiplicative Dirac structures]
We define the product of two Dirac manifolds and introduce the notion of a Dirac–Lie group of Poisson type. This notion is equivalent to that of multiplicative Dirac structure and any real simply-connected Lie group carries a no trivial multiplicative Dirac structure when its dimension is at least 2.
Nous définissons le produit de deux variétés de Dirac et la notion de groupe de Dirac–Lie de type Poisson. Cette notion est équivalente à celle de structure de Dirac multiplicative et tout groupe de Lie réel simplement connexe, de dimension au moins 2 porte une structure de Dirac multiplicative non triviale.
Accepted:
Published online:
Atallah Affane 1
@article{CRMATH_2009__347_21-22_1299_0, author = {Atallah Affane}, title = {Caract\'erisation et existence de structures de {Dirac} multiplicatives}, journal = {Comptes Rendus. Math\'ematique}, pages = {1299--1304}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.10.002}, language = {fr}, }
Atallah Affane. Caractérisation et existence de structures de Dirac multiplicatives. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1299-1304. doi : 10.1016/j.crma.2009.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.002/
[1] Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier, Volume 53 (2003), pp. 309-337
[2] Lie–Poisson groups: Remarks and examples, Lett. Math. Phys., Volume 19 (1990), pp. 343-353
[3] Dirac manifolds, Trans. Amer. Math. Soc., Volume 319 (1990), pp. 631-661
[4] Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of the classical Yang–Baxter equations, Soviet Math. Dokl., Volume 27 (1983) no. 1, pp. 68-71
[5] Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978
[6] K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Lecture Notes London Math. Soc., vol. 213, 2005
[7] Multiplicative Dirac structures on Lie groups, 12 June 2009 | arXiv
Cited by Sources:
Comments - Policy