Comptes Rendus
Géométrie différentielle
Caractérisation et existence de structures de Dirac multiplicatives
[Characterization and existence of multiplicative Dirac structures]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1299-1304.

We define the product of two Dirac manifolds and introduce the notion of a Dirac–Lie group of Poisson type. This notion is equivalent to that of multiplicative Dirac structure and any real simply-connected Lie group carries a no trivial multiplicative Dirac structure when its dimension is at least 2.

Nous définissons le produit de deux variétés de Dirac et la notion de groupe de Dirac–Lie de type Poisson. Cette notion est équivalente à celle de structure de Dirac multiplicative et tout groupe de Lie réel simplement connexe, de dimension au moins 2 porte une structure de Dirac multiplicative non triviale.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.10.002

Atallah Affane 1

1 Faculté de mathématiques, USTHB, B.P. 32 El Alia Bab Ezzouar, Alger, Algérie
@article{CRMATH_2009__347_21-22_1299_0,
     author = {Atallah Affane},
     title = {Caract\'erisation et existence de structures de {Dirac} multiplicatives},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1299--1304},
     publisher = {Elsevier},
     volume = {347},
     number = {21-22},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.002},
     language = {fr},
}
TY  - JOUR
AU  - Atallah Affane
TI  - Caractérisation et existence de structures de Dirac multiplicatives
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1299
EP  - 1304
VL  - 347
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.002
LA  - fr
ID  - CRMATH_2009__347_21-22_1299_0
ER  - 
%0 Journal Article
%A Atallah Affane
%T Caractérisation et existence de structures de Dirac multiplicatives
%J Comptes Rendus. Mathématique
%D 2009
%P 1299-1304
%V 347
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2009.10.002
%G fr
%F CRMATH_2009__347_21-22_1299_0
Atallah Affane. Caractérisation et existence de structures de Dirac multiplicatives. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1299-1304. doi : 10.1016/j.crma.2009.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.002/

[1] H. Bursztyn; O. Radko Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier, Volume 53 (2003), pp. 309-337

[2] M. Cahen; S. Gutt; C. Ohn; M. Parker Lie–Poisson groups: Remarks and examples, Lett. Math. Phys., Volume 19 (1990), pp. 343-353

[3] J.T. Courant Dirac manifolds, Trans. Amer. Math. Soc., Volume 319 (1990), pp. 631-661

[4] V. Drinfeld Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of the classical Yang–Baxter equations, Soviet Math. Dokl., Volume 27 (1983) no. 1, pp. 68-71

[5] S. Helgason Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978

[6] K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Lecture Notes London Math. Soc., vol. 213, 2005

[7] C. Ortiz Multiplicative Dirac structures on Lie groups, 12 June 2009 | arXiv

Cited by Sources:

Comments - Policy