[Sur une modification Hölder covariante de la dimension moyenne]
Soit Γ un groupe dénombrable infini qui agit naturellement sur
Let Γ be a infinite countable group which acts naturally on
Accepté le :
Publié le :
Antoine Gournay 1
@article{CRMATH_2009__347_23-24_1389_0, author = {Antoine Gournay}, title = {On a {H\"older} covariant version of mean dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {1389--1392}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.014}, language = {en}, }
Antoine Gournay. On a Hölder covariant version of mean dimension. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1389-1392. doi : 10.1016/j.crma.2009.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.014/
[1] Geometric Nonlinear Functional Analysis, vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000
[2] Width of
[3] Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., Volume 2 (1999) no. 4, pp. 323-415
[4] Mean topological dimension, Israel J. Math., Volume 115 (2000), pp. 1-24
[5] Macroscopic dimension of the
- Mean topological dimension for random bundle transformations, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 4, pp. 1020-1041 | DOI:10.1017/etds.2017.51 | Zbl:1409.37033
- Brody curves and mean dimension, Journal of the American Mathematical Society, Volume 28 (2015) no. 1, pp. 159-182 | DOI:10.1090/s0894-0347-2014-00798-0 | Zbl:1307.32013
- Instanton approximation, periodic ASD connections, and mean dimension, Journal of Functional Analysis, Volume 260 (2011) no. 5, pp. 1369-1427 | DOI:10.1016/j.jfa.2010.11.008 | Zbl:1217.58007
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique