Let Γ be a infinite countable group which acts naturally on . We introduce a modification of mean dimension which is an obstruction for and to be Hölder conjugates.
Soit Γ un groupe dénombrable infini qui agit naturellement sur . Nous introduisons une obstruction, proche de la dimension moyenne, au fait que et soit Hölder conjugués.
Accepted:
Published online:
Antoine Gournay 1
@article{CRMATH_2009__347_23-24_1389_0, author = {Antoine Gournay}, title = {On a {H\"older} covariant version of mean dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {1389--1392}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.014}, language = {en}, }
Antoine Gournay. On a Hölder covariant version of mean dimension. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1389-1392. doi : 10.1016/j.crma.2009.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.014/
[1] Geometric Nonlinear Functional Analysis, vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000
[2] Width of balls, 2008 (or p. 16; Houston J. Math., in press) | arXiv | HAL
[3] Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., Volume 2 (1999) no. 4, pp. 323-415
[4] Mean topological dimension, Israel J. Math., Volume 115 (2000), pp. 1-24
[5] Macroscopic dimension of the -ball with respect to the -norm, J. Math. Kyoto Univ., Volume 48 (2008) no. 2, pp. 445-454
Cited by Sources:
Comments - Policy