[Un modèle à deux échelles pour l'équation des ondes à coefficients et données oscillants]
Nous introduisons une transformation à deux échelles en espace et en temps destinée à capturer à la fois les basses fréquences et les ondes de Bloch qui apparaissent lors du processus asymptotique d'homogénéisation de l'équation des ondes à coefficients périodiques. La solution du modèle qui en résulte comprend les ondes de Bloch et une contribution basse fréquence qui est la solution du modèle homogénéisé de l'équation des ondes. On établit aussi les équations de transport vérifiées par les coefficients des ondes de Bloch.
We introduce a time-space two-scale transform designed to capture the high and low frequency waves in the asymptotics of the periodic homogenization of the wave equation. The asymptotical solution is the sum of the solution of known homogenized equations and of Bloch waves. We also derive the transport equations satisfied by the Bloch wave coefficients.
Accepté le :
Publié le :
Matthieu Brassart 1 ; Michel Lenczner 2
@article{CRMATH_2009__347_23-24_1439_0, author = {Matthieu Brassart and Michel Lenczner}, title = {A two-scale model for the wave equation with oscillating coefficients and data}, journal = {Comptes Rendus. Math\'ematique}, pages = {1439--1442}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.017}, language = {en}, }
TY - JOUR AU - Matthieu Brassart AU - Michel Lenczner TI - A two-scale model for the wave equation with oscillating coefficients and data JO - Comptes Rendus. Mathématique PY - 2009 SP - 1439 EP - 1442 VL - 347 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2009.10.017 LA - en ID - CRMATH_2009__347_23-24_1439_0 ER -
Matthieu Brassart; Michel Lenczner. A two-scale model for the wave equation with oscillating coefficients and data. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1439-1442. doi : 10.1016/j.crma.2009.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.017/
[1] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518
[2] Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995) no. 5, pp. 557-562
[3] Oscillations and energy densities in the wave equation, Comm. Partial Differential Equations, Volume 17 (1992) no. 11–12, pp. 1785-1865
[4] M. Kader, Contributions to modeling and control of distributed intelligent systems: Application to beam vibration control, PhD thesis, Université de Franche-Comté, France, 2000
[5] Two-scale model of the wave equation with oscillating coefficients, C. R. Acad. Sci. II, Mec. Phys. Astron., Volume 328 (2000) no. 4, pp. 335-340
Cité par Sources :
Commentaires - Politique