Comptes Rendus
Statistics
Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time
[L'optimalité et la suroptimalité du lissage localement linéaire de la fonction de régression]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 211-215.

Nous étudions l'estimation non paramétrique de la fonction de régression par le lissage localement linéaire au sens d'erreur quadratique asymptotique. Sous des conditions de forte mélangeance et d'irrégularité, nous obtenons des vitesses de convergence optimale et suroptimale de l'estimateur pour l'erreur quadratique asymptotique.

We consider the estimation problem of the nonparametric regression in continuous time by the local linear estimator in the asymptotic quadratic error sense. In suitable conditions of strongly mixing and that of irregularity, we obtained optimal and superoptimal convergence rate of the estimator.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.12.005

Jia Shen 1 ; Shuguang Sun 1

1 Department of Statistics, Fudan University, Shanghai 200433, China
@article{CRMATH_2010__348_3-4_211_0,
     author = {Jia Shen and Shuguang Sun},
     title = {Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {211--215},
     publisher = {Elsevier},
     volume = {348},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crma.2009.12.005},
     language = {en},
}
TY  - JOUR
AU  - Jia Shen
AU  - Shuguang Sun
TI  - Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 211
EP  - 215
VL  - 348
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2009.12.005
LA  - en
ID  - CRMATH_2010__348_3-4_211_0
ER  - 
%0 Journal Article
%A Jia Shen
%A Shuguang Sun
%T Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time
%J Comptes Rendus. Mathématique
%D 2010
%P 211-215
%V 348
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2009.12.005
%G en
%F CRMATH_2010__348_3-4_211_0
Jia Shen; Shuguang Sun. Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 211-215. doi : 10.1016/j.crma.2009.12.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.005/

[1] D. Blanke Estimation of local smoothness coefficients for continuous time processes, Stat. Inference Stoch. Process., Volume 5 (2002) no. 1, pp. 65-93

[2] D. Blanke; D. Bosq Regression estimation and prediction in continuous time, J. Japan Statist. Soc. (2008)

[3] D. Bosq Parametric rates of noparametric estimators and predictors for continuous time processes, Ann. Statist., Volume 25 (1997) no. 3, pp. 982-1000

[4] D. Bosq Nonparametric Statistics for Stochastic Processes, Lecture Notes in Statist., vol. 110, Springer-Verlag, New York, 1998

[5] D. Bosq; D. Blanke Inference and Prediction in Large Dimensions, Wiley Ser. Probab. Stat., vol. 754, Wiley-Dunod, Chichester, England, 2007

[6] D. Bosq; N. Cheze Erreur quadratique asymptotique optimale de l'estimateur non paramétrique de la régression pour des observations discrétisées d'un processus stationaire à temps continu, C. R. Acad. Sci., Paris Sér. I, Volume 317 (1993) no. 9, pp. 891-894

[7] J.V. Castellana; M.R. Leadbetter On smoothed probability density estimation or stationary processes, Stochastic Process. Appl., Volume 21 (1986), pp. 179-193

[8] N. Cheze Régression non paramétrique pour un processus à temps continu, C. R. Acad. Sci., Paris Sér. I, Volume 315 (1992), pp. 1009-1012

[9] Nathalie Cheze–Payaud, Régression, prédiction et discrétisation des processus à temps continu, PhD thesis, Université Pierre et Marie Curie (Paris 6), 1994

[10] J. Fan Design-adaptive nonparametric regression, J. Amer. Statist. Assoc., Volume 21 (1992), pp. 196-216

[11] J. Fan Local linear regression smoothers and their minimax efficiency, Ann. Statist., Volume 21 (1993), pp. 196-216

[12] J. Fan; I. Gijbels Local Polynomial Modelling and Its Applications, Chapman & Hall, London, 1996

[13] M.C. Viano; C. Deniau; G. Oppenheim Continuous-time fractional ARMA processes, Statist. Probab. Lett., Volume 21 (1994), pp. 323-336

Cité par Sources :

Supported partly by Natural Science Foundation of China (Project Number: 70832005) and Shanghai Leading Academic Discipline Project, Project Number: B210.

Commentaires - Politique