[L'optimalité et la suroptimalité du lissage localement linéaire de la fonction de régression]
Nous étudions l'estimation non paramétrique de la fonction de régression par le lissage localement linéaire au sens d'erreur quadratique asymptotique. Sous des conditions de forte mélangeance et d'irrégularité, nous obtenons des vitesses de convergence optimale et suroptimale de l'estimateur pour l'erreur quadratique asymptotique.
We consider the estimation problem of the nonparametric regression in continuous time by the local linear estimator in the asymptotic quadratic error sense. In suitable conditions of strongly mixing and that of irregularity, we obtained optimal and superoptimal convergence rate of the estimator.
Accepté le :
Publié le :
Jia Shen 1 ; Shuguang Sun 1
@article{CRMATH_2010__348_3-4_211_0, author = {Jia Shen and Shuguang Sun}, title = {Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time}, journal = {Comptes Rendus. Math\'ematique}, pages = {211--215}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.12.005}, language = {en}, }
TY - JOUR AU - Jia Shen AU - Shuguang Sun TI - Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time JO - Comptes Rendus. Mathématique PY - 2010 SP - 211 EP - 215 VL - 348 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2009.12.005 LA - en ID - CRMATH_2010__348_3-4_211_0 ER -
%0 Journal Article %A Jia Shen %A Shuguang Sun %T Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time %J Comptes Rendus. Mathématique %D 2010 %P 211-215 %V 348 %N 3-4 %I Elsevier %R 10.1016/j.crma.2009.12.005 %G en %F CRMATH_2010__348_3-4_211_0
Jia Shen; Shuguang Sun. Optimal and superoptimal convergence rate of the local linear estimator of nonparametric regression function in continuous time. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 211-215. doi : 10.1016/j.crma.2009.12.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.005/
[1] Estimation of local smoothness coefficients for continuous time processes, Stat. Inference Stoch. Process., Volume 5 (2002) no. 1, pp. 65-93
[2] Regression estimation and prediction in continuous time, J. Japan Statist. Soc. (2008)
[3] Parametric rates of noparametric estimators and predictors for continuous time processes, Ann. Statist., Volume 25 (1997) no. 3, pp. 982-1000
[4] Nonparametric Statistics for Stochastic Processes, Lecture Notes in Statist., vol. 110, Springer-Verlag, New York, 1998
[5] Inference and Prediction in Large Dimensions, Wiley Ser. Probab. Stat., vol. 754, Wiley-Dunod, Chichester, England, 2007
[6] Erreur quadratique asymptotique optimale de l'estimateur non paramétrique de la régression pour des observations discrétisées d'un processus stationaire à temps continu, C. R. Acad. Sci., Paris Sér. I, Volume 317 (1993) no. 9, pp. 891-894
[7] On smoothed probability density estimation or stationary processes, Stochastic Process. Appl., Volume 21 (1986), pp. 179-193
[8] Régression non paramétrique pour un processus à temps continu, C. R. Acad. Sci., Paris Sér. I, Volume 315 (1992), pp. 1009-1012
[9] Nathalie Cheze–Payaud, Régression, prédiction et discrétisation des processus à temps continu, PhD thesis, Université Pierre et Marie Curie (Paris 6), 1994
[10] Design-adaptive nonparametric regression, J. Amer. Statist. Assoc., Volume 21 (1992), pp. 196-216
[11] Local linear regression smoothers and their minimax efficiency, Ann. Statist., Volume 21 (1993), pp. 196-216
[12] Local Polynomial Modelling and Its Applications, Chapman & Hall, London, 1996
[13] Continuous-time fractional ARMA processes, Statist. Probab. Lett., Volume 21 (1994), pp. 323-336
Cité par Sources :
☆ Supported partly by Natural Science Foundation of China (Project Number: 70832005) and Shanghai Leading Academic Discipline Project, Project Number: B210.
Commentaires - Politique