[Sur la fonction caractéristique de la distribution normale généralisée]
Pour la première fois on déduit une expression explicite de la fonction caractéristique de la distribution normale généralisée (GND). On déduit aussi une expression du coefficient de corrélation entre les valeurs d'une variable et leurs rangs dans les échantillonnages de la distribution normale généralisée. La première expression utilise la fonction hypergéométrique confluente de Fox–Wright , la seconde est exprimée via la fonction hypergéométrique gaussienne .
For the first time, an explicit closed form expression is derived for the characteristic function of the generalized normal distribution (GND). Also derived is an expression for the correlation coefficient between variate-values and their ranks in samples from the GND. The expression for the former involves the Fox–Wright generalized confluent hypergeometric -function, while the latter is expressed via the Gaussian hypergeometric .
Accepté le :
Publié le :
Tibor K. Pogány 1 ; Saralees Nadarajah 2
@article{CRMATH_2010__348_3-4_203_0, author = {Tibor K. Pog\'any and Saralees Nadarajah}, title = {On the characteristic function of the generalized normal distribution}, journal = {Comptes Rendus. Math\'ematique}, pages = {203--206}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.12.010}, language = {en}, }
TY - JOUR AU - Tibor K. Pogány AU - Saralees Nadarajah TI - On the characteristic function of the generalized normal distribution JO - Comptes Rendus. Mathématique PY - 2010 SP - 203 EP - 206 VL - 348 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2009.12.010 LA - en ID - CRMATH_2010__348_3-4_203_0 ER -
Tibor K. Pogány; Saralees Nadarajah. On the characteristic function of the generalized normal distribution. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 203-206. doi : 10.1016/j.crma.2009.12.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.010/
[1] Statistical Size Distributions in Economics and Actuarial Sciences, John Wiley and Sons, Hoboken, NJ, 2003
[2] Di una generalizzazione dello schema della curva normale, Annali della Facoltà di Economia e Commercio di Palermo, Volume 17 (1963), pp. 237-244
[3] The correlation between variate-values and ranks in samples from complete fourth power exponential distribution, Journal of Mathematics Research, Volume 1 (2009), pp. 14-18
[4] A generalized normal distribution, Journal of Applied Statistics, Volume 32 (2005), pp. 685-694
[5] T.K. Pogány, Closed expression for characteristic function of CEPE distribution, Journal of Mathematics Research (2009), in press
[6] Some families of Mathieu a-series and alternating Mathieu a-series, Applied Mathematics and Computation, Volume 173 (2006), pp. 69-108
[7] The correlation between variate-values and ranks in samples from a continuous distribution, British Journal of Statistical Psychology, Volume 7 (1954), pp. 37-44
[8] The correlation between variate-values and ranks in samples from a distributions having no variance, British Journal of Statistical Psychology, Volume 8 (1955), pp. 25-27
[9] On the law of frequency of error, Matematicheskiĭ Sbornik, Volume 31 (1923), pp. 296-301
Cité par Sources :
Commentaires - Politique