[Sommes, différences, produits et rapports de variables hypergéométriques beta]
Dans des publications récentes, le Professeur T. Pham-Gia a calculé les distributions de sommes, différences, produits et rapports de variables aléatoires beta indépendantes. Dans cette Note, nous étendons les résultats du Professeur Pham-Gia au cas où and sont des variables aléatoires indépendantes obéissant aux distributions hypergéométriques confluente et de Gauss (qui sont des généralisations de la distribution beta). Pour chacune de ces distributions, nous dérivons des expressions excates des densités , , et . Ces expressions impliquent des fonctions hypergéométriques de une et deux variables.
Recent papers by Professor T. Pham-Gia derived distributions of sums, differences, products and ratios of independent beta random variables. In this Note we extend Professor Pham-Gia's results when and are independent random variables distributed according to the confluent and Gauss hypergeometric distributions (which are generalizations of the beta distribution). For each of these distributions, we derive exact expressions for the densities of , , , and . The expressions turn out to involve the hypergeometric functions of one and two variables.
Accepté le :
Publié le :
Saralees Nadarajah 1
@article{CRMATH_2005__341_2_129_0, author = {Saralees Nadarajah}, title = {Sums, differences, products, and ratios of hypergeometric beta variables}, journal = {Comptes Rendus. Math\'ematique}, pages = {129--132}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.013}, language = {en}, }
Saralees Nadarajah. Sums, differences, products, and ratios of hypergeometric beta variables. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 129-132. doi : 10.1016/j.crma.2005.06.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.013/
[1] Prior assessments for prediction in queues, Statistician, Volume 43 (1994), pp. 139-153
[2] The distribution of product of independent beta random variables with application to multivariate analysis, Ann. Inst. Statist. Math., Volume 33 (1981), pp. 287-296
[3] Computationally convenient distributional assumptions for common-value auctions, Comput. Economics, Volume 12 (1988), pp. 61-78
[4] Table of Integrals, Series, and Products, Academic Press, San Diego, 2000
[5] Handbook of Beta Distribution and its Applications, Marcel Dekker, New York, 2004
[6] Continuous Univariate Distributions, vol. 2, John Wiley, New York, 1995
[7] Distributions of the ratios of independent beta variables and applications, Commun. Statist. Theory, Volume 29 (2000), pp. 2693-2715
[8] Bayesian analysis of the difference of two proportions, Commun. Statist. Theory, Volume 22 (1993), pp. 1755-1771
[9] Reliability of a standby system with beta component lifelength, IEEE Trans. Reliab. (1994), pp. 71-75
[10] Distribution of the linear combination of two general beta variables and applications, Commun. Statist. Theory, Volume 27 (1998), pp. 1851-1869
[11] The product and quotient of general beta distributions, Statist. Papers, Volume 43 (2002), pp. 537-550
[12] On the exact distribution for the product of two independent beta-distributed random variables, Metron, Volume 34 (1976), pp. 187-190
[13] On the distribution of the product of independent beta random variables, Statist. Probab. Lett., Volume 2 (1984), pp. 165-168
Cité par Sources :
Commentaires - Politique