[Propriétés de finitude pour un sous-groupe du groupe des automorphismes symétriques et purs]
Soit le groupe libre engendré par n éléments, et soit le groupe des automorphismes de qui envoient chaque générateur sur un conjugué. Le noyau de l'homomorphisme , obtenu en envoyant un des générateurs du groupe libre sur l'identité, est de type fini. On démontre que est de dimension cohomologique , est que n'est pas de type fini pour . Par conséquent n'est pas de présentation finie pour .
Let be the free group on n generators, and let be the group of automorphisms of that send each generator to a conjugate of itself. The kernel of the homomorphism , induced by mapping one of the free group generators to the identity, is finitely generated. We show that has cohomological dimension , and that is not finitely generated for . It follows that is not finitely presentable for .
Accepté le :
Publié le :
Alexandra Pettet 1
@article{CRMATH_2010__348_3-4_127_0, author = {Alexandra Pettet}, title = {Finiteness properties for a subgroup of the pure symmetric automorphism group}, journal = {Comptes Rendus. Math\'ematique}, pages = {127--130}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.12.011}, language = {en}, }
Alexandra Pettet. Finiteness properties for a subgroup of the pure symmetric automorphism group. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 127-130. doi : 10.1016/j.crma.2009.12.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.011/
[1] The pure symmetric automorphisms of a free group, form a duality group, J. Algebra, Volume 246 (2001) no. 2, pp. 881-896
[2] T. Brendle, A. Hatcher, Configuration spaces of rings and wickets, preprint, | arXiv
[3] Cohomology of the group of motions of n strings in 3-space, Göttingen, 1991/Seattle, WA, 1991 (Contemp. Math.), Volume vol. 150, Amer. Math. Soc., Providence, RI (1993), pp. 51-61
[4] Cohomological dimension and symmetric automorphisms of a free group, Comment. Math. Helv., Volume 64 (1989), pp. 44-61
[5] Structure and torsion in automorphisms groups of free products, Quart. J. Math. Oxford (2), Volume 41 (1990), pp. 155-178
[6] The theory of motion groups, Michigan Math. J., Volume 28 (1981) no. 1, pp. 3-17
[7] The integral cohomology of the group of loops, Geom. Topol., Volume 10 (2006), pp. 759-784
[8] Automorphisms of free groups with boundaries, Algebr. Geom. Topol., Volume 4 (2004), pp. 543-569
[9] On basis-conjugating automorphisms of free groups, Canad. J. Math., Volume 38 (1986) no. 6, pp. 1525-1529
Cité par Sources :
Commentaires - Politique