[Sur les sommes exponentielles associées aux -formes cuspidales]
On montre une estimation precise pour quelques sommes exponentielles des coefficients de Fourier des -formes cuspidales.
We will prove a sharp estimate for certain exponential sums of Fourier coefficients of cusp forms.
Accepté le :
Publié le :
Anne-Maria Ernvall-Hytönen 1
@article{CRMATH_2010__348_1-2_5_0, author = {Anne-Maria Ernvall-Hyt\"onen}, title = {On certain exponential sums related to $ \mathrm{GL}(3)$ cusp forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--8}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.12.012}, language = {en}, }
Anne-Maria Ernvall-Hytönen. On certain exponential sums related to $ \mathrm{GL}(3)$ cusp forms. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 5-8. doi : 10.1016/j.crma.2009.12.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.012/
[1] On short exponential sums involving Fourier coefficients of holomorphic cusp forms, Int. Math. Res. Not., Volume 2008 (2008) (Art. ID rnn022, 44 pp)
[2] Voronoi formulas on , Int. Math. Res. Not. (2006) (Art. ID 86295, 25 pp)
[3] On exponential sums involving the Ramanujan function, Proc. Indian Acad. Sci. Math. Sci., Volume 97 (1987) no. 1–3, pp. 157-166
[4] Uniform bound for Hecke L-functions, Acta Math., Volume 195 (2005), pp. 61-115
[5] The central value of the Rankin–Selberg L-functions | arXiv
[6] Cancellation in additively twisted sums on , Amer. J. Math., Volume 128 (2006) no. 3, pp. 699-729
[7] Automorphic distributions, L-functions, and Voronoi summation for , Ann. of Math. (2), Volume 164 (2006) no. 2, pp. 423-488
Cité par Sources :
Commentaires - Politique