[Inégalités précises liées à la formule de Gosper]
Le but de cette Note est de construire un nouveau type de série de Stirling, étendant la formule de Gosper pour les grandes factorielles. Nous établissons de nouvelles inégalités précises pour les fonctions gamma et digamma. Enfin, nous indiquons des calculs numériques qui démontre la supériorité de notre nouvelle série sur la série classique de Stirling.
The purpose of this Note is to construct a new type of Stirling series, which extends the Gosper's formula for big factorials. New sharp inequalities for the gamma and digamma functions are established. Finally, numerical computations which demonstrate the superiority of our new series over the classical Stirling's series are given.
Accepté le :
Publié le :
Cristinel Mortici 1
@article{CRMATH_2010__348_3-4_137_0, author = {Cristinel Mortici}, title = {Sharp inequalities related to {Gosper's} formula}, journal = {Comptes Rendus. Math\'ematique}, pages = {137--140}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.12.016}, language = {en}, }
Cristinel Mortici. Sharp inequalities related to Gosper's formula. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 137-140. doi : 10.1016/j.crma.2009.12.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.016/
[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (M. Abramowitz; I.A. Stegun, eds.), Dover, New York, 1972
[2] A monotoneity property of the gamma function, Proc. Amer. Math. Soc., Volume 125 (1997) no. 11, pp. 3355-3362
[3] A stochastic approach to the gamma function, Amer. Math. Monthly, Volume 101 (1994) no. 9, pp. 858-864
[4] Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, Volume 75 (1978), pp. 40-42
[5] An algebraic inequality II, RGMIA Res. Rep. Coll. 4, Volume 1 (2001) no. 8, pp. 55-61 http://rgmia.vu.edu.au/v4n1.html (available online at)
[6] Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math. Nachr., Volume 139 (1988), pp. 281-288
[7] Some inequalities involving , Proc. Edinburgh Math. Soc., Volume 14 (1964/65), pp. 41-46
[8] An ultimate extremely accurate formula for approximation of the factorial function, Arch. Math. (Basel), Volume 93 (2009) no. 1, pp. 37-45
[9] Complete monotonic functions associated with gamma function and applications, Carpathian J. Math., Volume 25 (2009) no. 2, pp. 186-191
[10] Product approximations via asymptotic integration, Amer. Math. Monthly, Volume 117 (2010) no. 5, pp. 434-441
[11] New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett., Volume 23 (2010) no. 1, pp. 97-100
[12] C. Mortici, New sharp bounds for gamma and digamma functions, An. Ştiinţ. Univ. A. I. Cuza Iaşi Ser. N. Matem. 56 (2) (2010), in press
[13] Optimizing the rate of convergence in some new classes of sequences convergent to Euler's constant, Anal. Appl. (Singap.), Volume 8 (2010) no. 1, pp. 99-107
[14] Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct., Volume 18 (2007) no. 7, pp. 503-509
Cité par Sources :
Commentaires - Politique