[Inégalités précises liées à la formule de Gosper]
The purpose of this Note is to construct a new type of Stirling series, which extends the Gosper's formula for big factorials. New sharp inequalities for the gamma and digamma functions are established. Finally, numerical computations which demonstrate the superiority of our new series over the classical Stirling's series are given.
Le but de cette Note est de construire un nouveau type de série de Stirling, étendant la formule de Gosper pour les grandes factorielles. Nous établissons de nouvelles inégalités précises pour les fonctions gamma et digamma. Enfin, nous indiquons des calculs numériques qui démontre la supériorité de notre nouvelle série sur la série classique de Stirling.
Accepté le :
Publié le :
Cristinel Mortici 1
@article{CRMATH_2010__348_3-4_137_0, author = {Cristinel Mortici}, title = {Sharp inequalities related to {Gosper's} formula}, journal = {Comptes Rendus. Math\'ematique}, pages = {137--140}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.12.016}, language = {en}, }
Cristinel Mortici. Sharp inequalities related to Gosper's formula. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 137-140. doi : 10.1016/j.crma.2009.12.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.016/
[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (M. Abramowitz; I.A. Stegun, eds.), Dover, New York, 1972
[2] A monotoneity property of the gamma function, Proc. Amer. Math. Soc., Volume 125 (1997) no. 11, pp. 3355-3362
[3] A stochastic approach to the gamma function, Amer. Math. Monthly, Volume 101 (1994) no. 9, pp. 858-864
[4] Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, Volume 75 (1978), pp. 40-42
[5] An algebraic inequality II, RGMIA Res. Rep. Coll. 4, Volume 1 (2001) no. 8, pp. 55-61 http://rgmia.vu.edu.au/v4n1.html (available online at)
[6] Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math. Nachr., Volume 139 (1988), pp. 281-288
[7] Some inequalities involving
[8] An ultimate extremely accurate formula for approximation of the factorial function, Arch. Math. (Basel), Volume 93 (2009) no. 1, pp. 37-45
[9] Complete monotonic functions associated with gamma function and applications, Carpathian J. Math., Volume 25 (2009) no. 2, pp. 186-191
[10] Product approximations via asymptotic integration, Amer. Math. Monthly, Volume 117 (2010) no. 5, pp. 434-441
[11] New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett., Volume 23 (2010) no. 1, pp. 97-100
[12] C. Mortici, New sharp bounds for gamma and digamma functions, An. Ştiinţ. Univ. A. I. Cuza Iaşi Ser. N. Matem. 56 (2) (2010), in press
[13] Optimizing the rate of convergence in some new classes of sequences convergent to Euler's constant, Anal. Appl. (Singap.), Volume 8 (2010) no. 1, pp. 99-107
[14] Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct., Volume 18 (2007) no. 7, pp. 503-509
- Two Approximation Formulas for Gamma Function with Monotonic Remainders, Mathematics, Volume 12 (2024) no. 5, p. 655 | DOI:10.3390/math12050655
- Padé approximant related to asymptotics for the gamma function, Journal of Inequalities and Applications, Volume 2017 (2017), p. 13 (Id/No 53) | DOI:10.1186/s13660-017-1315-1 | Zbl:1359.33001
- Some asymptotic expansions on hyperfactorial functions and generalized Glaisher-Kinkelin constants, The Ramanujan Journal, Volume 43 (2017) no. 3, pp. 513-533 | DOI:10.1007/s11139-017-9909-2 | Zbl:1375.41019
- On the asymptotic expansions of the gamma function related to the Nemes, Gosper and Burnside formulas, Applied Mathematics and Computation, Volume 276 (2016), pp. 417-431 | DOI:10.1016/j.amc.2015.12.004 | Zbl:1410.33005
- Asymptotic expansions related to hyperfactorial function and Glaisher-Kinkelin constant, Applied Mathematics and Computation, Volume 283 (2016), pp. 153-162 | DOI:10.1016/j.amc.2016.02.027 | Zbl:1410.41046
- Monotonicity properties, inequalities and asymptotic expansions associated with the gamma function, Applied Mathematics and Computation, Volume 283 (2016), pp. 385-396 | DOI:10.1016/j.amc.2016.02.040 | Zbl:1410.33006
- Sharp inequalities and asymptotic expansions for the gamma function, Journal of Number Theory, Volume 160 (2016), pp. 418-431 | DOI:10.1016/j.jnt.2015.09.021 | Zbl:1336.33003
- Inequalities and asymptotic expansions for the gamma function related to Mortici's formula, Journal of Number Theory, Volume 162 (2016), pp. 578-588 | DOI:10.1016/j.jnt.2015.09.014 | Zbl:1331.33001
- Unified approaches to the approximations of the gamma function, Journal of Number Theory, Volume 163 (2016), pp. 570-595 | DOI:10.1016/j.jnt.2015.12.016 | Zbl:1342.33005
- A more accurate approximation for the gamma function, Journal of Number Theory, Volume 164 (2016), pp. 417-428 | DOI:10.1016/j.jnt.2015.11.007 | Zbl:1334.33005
- Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function, Applied Mathematics and Computation, Volume 250 (2015), pp. 514-529 | DOI:10.1016/j.amc.2014.11.010 | Zbl:1328.33001
- Asymptotic approximations for non-integer order derivatives of monomials, International Journal of Mathematical Education in Science and Technology, Volume 46 (2015) no. 2, pp. 305-311 | DOI:10.1080/0020739x.2014.956823 | Zbl:1317.97007
- Multiple-correction and continued fraction approximation, Journal of Mathematical Analysis and Applications, Volume 424 (2015) no. 2, pp. 1425-1446 | DOI:10.1016/j.jmaa.2014.12.014 | Zbl:1306.11099
- Inequalities and asymptotic expansions for the gamma function, Journal of Number Theory, Volume 149 (2015), pp. 313-326 | DOI:10.1016/j.jnt.2014.09.006 | Zbl:1305.33003
- Multiple-correction and faster approximation, Journal of Number Theory, Volume 149 (2015), pp. 327-350 | DOI:10.1016/j.jnt.2014.10.016 | Zbl:1369.11107
- Some new quicker continued fraction approximations for the gamma function related to the Nemes' formula, Numerical Algorithms, Volume 70 (2015) no. 4, pp. 825-833 | DOI:10.1007/s11075-015-9975-8 | Zbl:1334.33009
- Asymptotic expansions of the gamma function related to Windschitl's formula, Applied Mathematics and Computation, Volume 245 (2014), pp. 174-180 | DOI:10.1016/j.amc.2014.07.080 | Zbl:1335.41007
- On Stirling's formula remainder, Applied Mathematics and Computation, Volume 247 (2014), pp. 494-500 | DOI:10.1016/j.amc.2014.09.012 | Zbl:1338.33004
- Asymptotic formulas for sequence factorial of arithmetic progression, International Journal of Mathematical Education in Science and Technology, Volume 45 (2014) no. 6, pp. 947-952 | DOI:10.1080/0020739x.2014.892165 | Zbl:1314.97007
- A continued product approximation for the gamma function, Integral Transforms and Special Functions, Volume 24 (2013) no. 10, pp. 831-839 | DOI:10.1080/10652469.2012.762710 | Zbl:1282.33003
- Unified treatment of several asymptotic formulas for the gamma function, Numerical Algorithms, Volume 64 (2013) no. 2, pp. 311-319 | DOI:10.1007/s11075-012-9667-6 | Zbl:1280.33003
- Two families of approximations for the gamma function, Numerical Algorithms, Volume 64 (2013) no. 3, pp. 403-416 | DOI:10.1007/s11075-012-9671-x | Zbl:1285.65012
- Remarks on asymptotic expansions for the gamma function, Applied Mathematics Letters, Volume 25 (2012) no. 12, pp. 2322-2326 | DOI:10.1016/j.aml.2012.06.025 | Zbl:1254.33002
- Improved asymptotic formulas for the gamma function, Computers Mathematics with Applications, Volume 61 (2011) no. 11, pp. 3364-3369 | DOI:10.1016/j.camwa.2011.04.036 | Zbl:1222.33003
- Refinements of Gurland's formula for pi, Computers Mathematics with Applications, Volume 62 (2011) no. 6, pp. 2616-2620 | DOI:10.1016/j.camwa.2011.07.073 | Zbl:1231.33002
- A new Stirling series as continued fraction, Numerical Algorithms, Volume 56 (2011) no. 1, pp. 17-26 | DOI:10.1007/s11075-010-9370-4 | Zbl:1213.33007
- Ramanujan's estimate for the gamma function via monotonicity arguments, The Ramanujan Journal, Volume 25 (2011) no. 2, pp. 149-154 | DOI:10.1007/s11139-010-9265-y | Zbl:1217.33003
- On Ramanujan's large argument formula for the gamma function, The Ramanujan Journal, Volume 26 (2011) no. 2, pp. 185-192 | DOI:10.1007/s11139-010-9281-y | Zbl:1255.33001
- New improvements of the Stirling formula, Applied Mathematics and Computation, Volume 217 (2010) no. 2, pp. 699-704 | DOI:10.1016/j.amc.2010.06.007 | Zbl:1202.33004
- Ramanujan formula for the generalized Stirling approximation, Applied Mathematics and Computation, Volume 217 (2010) no. 6, pp. 2579-2585 | DOI:10.1016/j.amc.2010.07.070 | Zbl:1211.40005
- Estimating the digamma and trigamma functions by completely monotonicity arguments, Applied Mathematics and Computation, Volume 217 (2010) no. 8, pp. 4081-4085 | DOI:10.1016/j.amc.2010.10.023 | Zbl:1207.33002
- A class of integral approximations for the factorial function, Computers Mathematics with Applications, Volume 59 (2010) no. 6, pp. 2053-2058 | DOI:10.1016/j.camwa.2009.12.010 | Zbl:1189.33005
- The asymptotic series of the generalized Stirling formula, Computers Mathematics with Applications, Volume 60 (2010) no. 3, pp. 786-791 | DOI:10.1016/j.camwa.2010.05.025 | Zbl:1201.33002
- New approximation formulas for evaluating the ratio of gamma functions, Mathematical and Computer Modelling, Volume 52 (2010) no. 1-2, pp. 425-433 | DOI:10.1016/j.mcm.2010.03.013 | Zbl:1201.33003
- Monotonicity properties of the volume of the unit ball in
, Optimization Letters, Volume 4 (2010) no. 3, pp. 457-464 | DOI:10.1007/s11590-009-0173-2 | Zbl:1225.33006
Cité par 35 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier