We shall find some sharp constants in one type of uncertainty principle — Paneyah–Logvinenko–Sereda theorem.
On trouve la norme de l'opérateur inverse de l'opérateur de restriction pour deux types d'ensembles dans la classe des fonctions de Paley–Wiener.
Accepted:
Published online:
Alexander Reznikov 1
@article{CRMATH_2010__348_3-4_141_0, author = {Alexander Reznikov}, title = {Sharp constants in the {Paneyah{\textendash}Logvinenko{\textendash}Sereda} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {141--144}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.10.029}, language = {en}, }
Alexander Reznikov. Sharp constants in the Paneyah–Logvinenko–Sereda theorem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 141-144. doi : 10.1016/j.crma.2009.10.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.029/
[1] The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, 1994
[2] Perturbation Theory for Linear Operators, Springer, 1995
[3] Spheroid and Coulons Spheroid Functions, Nauka, 1976 (in Russian)
[4] Thin and thick families of rational fractions, Complex Analysis and Spectral Theory, Lecture Notes in Math., vol. 864, 1981, pp. 440-480
Cited by Sources:
Comments - Policy