[Unicité faible des équations de Fokker–Planck avec coefficients dégénérées et bornées]
In this Note, by using the theory of stochastic differential equations (SDE), we prove uniqueness of measure-valued solutions and
Dans cette Note, en utilisant la théorie des équations différentielles stochastiques (EDS), nous démontrons l'unicité de solutions
Publié le :
Michael Röckner 1, 2 ; Xicheng Zhang 3
@article{CRMATH_2010__348_7-8_435_0, author = {Michael R\"ockner and Xicheng Zhang}, title = {Weak uniqueness of {Fokker{\textendash}Planck} equations with degenerate and bounded coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {435--438}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2010.01.001}, language = {en}, }
TY - JOUR AU - Michael Röckner AU - Xicheng Zhang TI - Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients JO - Comptes Rendus. Mathématique PY - 2010 SP - 435 EP - 438 VL - 348 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2010.01.001 LA - en ID - CRMATH_2010__348_7-8_435_0 ER -
Michael Röckner; Xicheng Zhang. Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 435-438. doi : 10.1016/j.crma.2010.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.001/
[1] Uniqueness of solutions to weak parabolic equations for measures, Bull. Lond. Math. Soc., Volume 39 (2007) no. 4, pp. 631-640
[2] Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46
[3] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, London, 1992
[4] Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., Volume 254 (2008) no. 1, pp. 109-153
[5] Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodanska, Amsterdam/Tokyo, 1981
[6] Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients, Comm. in Partial Differential Equations, Volume 33 (2008), pp. 1272-1317
[7] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970
[8] X. Zhang, Stochastic flows of SDEs with irregular coefficients and stochastic transport equations, Bull. Sci. Math. France, , in press | DOI
Cité par Sources :
Commentaires - Politique