[Unicité faible des équations de Fokker–Planck avec coefficients dégénérées et bornées]
Dans cette Note, en utilisant la théorie des équations différentielles stochastiques (EDS), nous démontrons l'unicité de solutions et à valeurs mesures pour des équations de Fokker–Planck du second ordre dégénérées, sous des conditions faibles sur les coefficients. Nos résultats d'unicité sont fondés sur le lien naturel existant entre les équations de Fokker–Planck et les EDS.
In this Note, by using the theory of stochastic differential equations (SDE), we prove uniqueness of measure-valued solutions and -solutions to degenerate second order Fokker–Planck equations under weak conditions on the coefficients. Our uniqueness results are based on the natural connection between Fokker–Planck equations and SDEs.
Publié le :
Michael Röckner 1, 2 ; Xicheng Zhang 3
@article{CRMATH_2010__348_7-8_435_0, author = {Michael R\"ockner and Xicheng Zhang}, title = {Weak uniqueness of {Fokker{\textendash}Planck} equations with degenerate and bounded coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {435--438}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2010.01.001}, language = {en}, }
TY - JOUR AU - Michael Röckner AU - Xicheng Zhang TI - Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients JO - Comptes Rendus. Mathématique PY - 2010 SP - 435 EP - 438 VL - 348 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2010.01.001 LA - en ID - CRMATH_2010__348_7-8_435_0 ER -
Michael Röckner; Xicheng Zhang. Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 435-438. doi : 10.1016/j.crma.2010.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.001/
[1] Uniqueness of solutions to weak parabolic equations for measures, Bull. Lond. Math. Soc., Volume 39 (2007) no. 4, pp. 631-640
[2] Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46
[3] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, London, 1992
[4] Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., Volume 254 (2008) no. 1, pp. 109-153
[5] Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodanska, Amsterdam/Tokyo, 1981
[6] Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients, Comm. in Partial Differential Equations, Volume 33 (2008), pp. 1272-1317
[7] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970
[8] X. Zhang, Stochastic flows of SDEs with irregular coefficients and stochastic transport equations, Bull. Sci. Math. France, , in press | DOI
Cité par Sources :
Commentaires - Politique