[Unicité faible des équations de Fokker–Planck avec coefficients dégénérées et bornées]
Dans cette Note, en utilisant la théorie des équations différentielles stochastiques (EDS), nous démontrons l'unicité de solutions
In this Note, by using the theory of stochastic differential equations (SDE), we prove uniqueness of measure-valued solutions and
Publié le :
Michael Röckner 1, 2 ; Xicheng Zhang 3
@article{CRMATH_2010__348_7-8_435_0, author = {Michael R\"ockner and Xicheng Zhang}, title = {Weak uniqueness of {Fokker{\textendash}Planck} equations with degenerate and bounded coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {435--438}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2010.01.001}, language = {en}, }
TY - JOUR AU - Michael Röckner AU - Xicheng Zhang TI - Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients JO - Comptes Rendus. Mathématique PY - 2010 SP - 435 EP - 438 VL - 348 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2010.01.001 LA - en ID - CRMATH_2010__348_7-8_435_0 ER -
Michael Röckner; Xicheng Zhang. Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 435-438. doi : 10.1016/j.crma.2010.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.001/
[1] Uniqueness of solutions to weak parabolic equations for measures, Bull. Lond. Math. Soc., Volume 39 (2007) no. 4, pp. 631-640
[2] Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46
[3] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, London, 1992
[4] Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., Volume 254 (2008) no. 1, pp. 109-153
[5] Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodanska, Amsterdam/Tokyo, 1981
[6] Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients, Comm. in Partial Differential Equations, Volume 33 (2008), pp. 1272-1317
[7] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970
[8] X. Zhang, Stochastic flows of SDEs with irregular coefficients and stochastic transport equations, Bull. Sci. Math. France, , in press | DOI
- Compound Poisson particle approximation for McKean–Vlasov SDEs, IMA Journal of Numerical Analysis (2025) | DOI:10.1093/imanum/drae095
- Transport equations and flows with one-sided Lipschitz velocity fields, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 5, p. 61 (Id/No 86) | DOI:10.1007/s00205-024-02029-0 | Zbl:7963912
- Optimal Control of Diffusion Processes: Infinite-Order Variational Analysis and Numerical Solution, IEEE Control Systems Letters, Volume 8 (2024), p. 1469 | DOI:10.1109/lcsys.2024.3410632
- Strong solutions to McKean-Vlasov SDEs with coefficients of Nemytskii type: the time-dependent case, Journal of Evolution Equations, Volume 24 (2024) no. 2, p. 14 (Id/No 37) | DOI:10.1007/s00028-024-00970-x | Zbl:1552.60149
- On fully nonlinear parabolic mean field games with nonlocal and local diffusions, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 5, pp. 6302-6336 | DOI:10.1137/23m1615528 | Zbl:1551.35437
- Strong solutions to McKean-Vlasov SDEs with coefficients of Nemytskii-type, Electronic Communications in Probability, Volume 28 (2023), p. 13 (Id/No 11) | DOI:10.1214/23-ecp519 | Zbl:1517.60062
- Optimal control of stochastic differential equations via Fokker-Planck equations, Applied Mathematics and Optimization, Volume 84 (2021), pp. 1555-1583 | DOI:10.1007/s00245-021-09804-5 | Zbl:1485.93621
- On the Ambrosio-Figalli-Trevisan superposition principle for probability solutions to Fokker-Planck-Kolmogorov equations, Journal of Dynamics and Differential Equations, Volume 33 (2021) no. 2, pp. 715-739 | DOI:10.1007/s10884-020-09828-5 | Zbl:1474.60185
- Expected exit time for time-periodic stochastic differential equations and applications to stochastic resonance, Physica D, Volume 417 (2021), p. 18 (Id/No 132815) | DOI:10.1016/j.physd.2020.132815 | Zbl:1487.60106
- Superposition principle for non-local Fokker-Planck-Kolmogorov operators, Probability Theory and Related Fields, Volume 178 (2020) no. 3-4, pp. 699-733 | DOI:10.1007/s00440-020-00985-8 | Zbl:1469.60196
- Quantitative stability estimates for Fokker-Planck equations, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 122 (2019), pp. 125-163 | DOI:10.1016/j.matpur.2018.08.003 | Zbl:1406.35412
- Statistical stability for transport in random media, Multiscale Modeling Simulation, Volume 17 (2019) no. 1, pp. 507-530 | DOI:10.1137/18m1184643 | Zbl:1426.82047
- Stochastic Hamiltonian flows with singular coefficients, Science China. Mathematics, Volume 61 (2018) no. 8, pp. 1353-1384 | DOI:10.1007/s11425-017-9127-0 | Zbl:1409.60093
- Regularization and Well-Posedness by Noise for Ordinary and Partial Differential Equations, Stochastic Partial Differential Equations and Related Fields, Volume 229 (2018), p. 43 | DOI:10.1007/978-3-319-74929-7_3
- The Itô SDEs and Fokker-Planck equations with Osgood and Sobolev coefficients, Stochastics, Volume 90 (2018) no. 3, pp. 379-410 | DOI:10.1080/17442508.2017.1357723 | Zbl:1498.60228
- Strong solutions to stochastic differential equations with rough coefficients, The Annals of Probability, Volume 46 (2018) no. 3, pp. 1498-1541 | DOI:10.1214/17-aop1208 | Zbl:1451.60091
- On the Cauchy problem for Fokker-Planck-Kolmogorov equations with potential terms on arbitrary domains, Journal of Dynamics and Differential Equations, Volume 28 (2016) no. 2, pp. 493-518 | DOI:10.1007/s10884-015-9453-y | Zbl:1348.35092
- A unified treatment for ODEs under Osgood and Sobolev type conditions, Bulletin des Sciences Mathématiques, Volume 139 (2015) no. 1, pp. 114-133 | DOI:10.1016/j.bulsci.2014.08.005 | Zbl:1351.37084
- Uniqueness problems for degenerate Fokker-Planck-Kolmogorov equations, Journal of Mathematical Sciences (New York), Volume 207 (2015) no. 2, pp. 147-165 | DOI:10.1007/s10958-015-2362-0 | Zbl:1321.35242
- On the martingale problem for degenerate-parabolic partial differential operators with unbounded coefficients and a mimicking theorem for Itô processes, Transactions of the American Mathematical Society, Volume 367 (2015) no. 11, pp. 7565-7593 | DOI:10.1090/tran/6243 | Zbl:1330.60062
- Uniqueness of degenerate Fokker-Planck equations with weakly differentiable drift whose gradient is given by a singular integral, Electronic Communications in Probability, Volume 19 (2014) no. none | DOI:10.1214/ecp.v19-3407
- Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients, Acta Mathematica Sinica. English Series, Volume 29 (2013) no. 2, pp. 303-314 | DOI:10.1007/s10114-012-1302-x | Zbl:1318.35130
- Degenerate irregular SDEs with jumps and application to integro-differential equations of Fokker-Planck type, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2820
- Uniqueness for solutions of Fokker-Planck equations related to singular SPDE driven by Lévy and cylindrical Wiener noise, Journal of Evolution Equations, Volume 13 (2013) no. 2, pp. 369-394 | DOI:10.1007/s00028-013-0183-5 | Zbl:1273.60078
- On uniqueness of solutions to the Cauchy problem for degenerate Fokker-Planck-Kolmogorov equations, Journal of Evolution Equations, Volume 13 (2013) no. 3, pp. 577-593 | DOI:10.1007/s00028-013-0191-5 | Zbl:1273.35271
-
-solutions of Fokker-Planck equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 85 (2013), pp. 110-124 | DOI:10.1016/j.na.2013.02.022 | Zbl:1278.35247 - On Uniqueness of a Probability Solution to the Cauchy Problem for the Fokker–Planck–Kolmogorov Equation, Theory of Probability Its Applications, Volume 56 (2012) no. 1, p. 96 | DOI:10.1137/s0040585x97985212
- On the uniqueness of integrable and probability solutions to the Cauchy problem for the Fokker-Planck-Kolmogorov equations, Doklady Mathematics, Volume 84 (2011) no. 1, pp. 565-570 | DOI:10.1134/s106456241104020x | Zbl:1235.35274
- On uniqueness problems related to the Fokker-Planck-Kolmogorov equation for measures, Journal of Mathematical Sciences (New York), Volume 179 (2011) no. 1, pp. 7-47 | DOI:10.1007/s10958-011-0581-6 | Zbl:1291.35425
- Limit Theorems for Stochastic Differential Equations with Discontinuous Coefficients, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 1, p. 302 | DOI:10.1137/10078952x
Cité par 30 documents. Sources : Crossref, zbMATH
Commentaires - Politique