Comptes Rendus
Probability Theory
Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients
[Unicité faible des équations de Fokker–Planck avec coefficients dégénérées et bornées]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 435-438.

Dans cette Note, en utilisant la théorie des équations différentielles stochastiques (EDS), nous démontrons l'unicité de solutions Lp et à valeurs mesures pour des équations de Fokker–Planck du second ordre dégénérées, sous des conditions faibles sur les coefficients. Nos résultats d'unicité sont fondés sur le lien naturel existant entre les équations de Fokker–Planck et les EDS.

In this Note, by using the theory of stochastic differential equations (SDE), we prove uniqueness of measure-valued solutions and Lp-solutions to degenerate second order Fokker–Planck equations under weak conditions on the coefficients. Our uniqueness results are based on the natural connection between Fokker–Planck equations and SDEs.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.01.001

Michael Röckner 1, 2 ; Xicheng Zhang 3

1 Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
2 Departments of Mathematics and Statistics, Purdue University, W. Laffayette, IN 47907, USA
3 Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
@article{CRMATH_2010__348_7-8_435_0,
     author = {Michael R\"ockner and Xicheng Zhang},
     title = {Weak uniqueness of {Fokker{\textendash}Planck} equations with degenerate and bounded coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {435--438},
     publisher = {Elsevier},
     volume = {348},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crma.2010.01.001},
     language = {en},
}
TY  - JOUR
AU  - Michael Röckner
AU  - Xicheng Zhang
TI  - Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 435
EP  - 438
VL  - 348
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2010.01.001
LA  - en
ID  - CRMATH_2010__348_7-8_435_0
ER  - 
%0 Journal Article
%A Michael Röckner
%A Xicheng Zhang
%T Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients
%J Comptes Rendus. Mathématique
%D 2010
%P 435-438
%V 348
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2010.01.001
%G en
%F CRMATH_2010__348_7-8_435_0
Michael Röckner; Xicheng Zhang. Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 435-438. doi : 10.1016/j.crma.2010.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.001/

[1] V.I. Bogachev; G. Da Prato; M. Röckner; W. Stannat Uniqueness of solutions to weak parabolic equations for measures, Bull. Lond. Math. Soc., Volume 39 (2007) no. 4, pp. 631-640

[2] G. Crippa; C. De Lellis Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46

[3] L.C. Evans; R.F. Gariepy Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, London, 1992

[4] A. Figalli Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., Volume 254 (2008) no. 1, pp. 109-153

[5] N. Ikeda; S. Watanabe Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodanska, Amsterdam/Tokyo, 1981

[6] C. Le Bris; P.L. Lions Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients, Comm. in Partial Differential Equations, Volume 33 (2008), pp. 1272-1317

[7] E.M. Stein Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970

[8] X. Zhang, Stochastic flows of SDEs with irregular coefficients and stochastic transport equations, Bull. Sci. Math. France, , in press | DOI

  • Xicheng Zhang Compound Poisson particle approximation for McKean–Vlasov SDEs, IMA Journal of Numerical Analysis (2025) | DOI:10.1093/imanum/drae095
  • Pierre-Louis Lions; Benjamin Seeger Transport equations and flows with one-sided Lipschitz velocity fields, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 5, p. 61 (Id/No 86) | DOI:10.1007/s00205-024-02029-0 | Zbl:7963912
  • Roman Chertovskih; Nikolay Pogodaev; Maxim Staritsyn; A. Pedro Aguiar Optimal Control of Diffusion Processes: Infinite-Order Variational Analysis and Numerical Solution, IEEE Control Systems Letters, Volume 8 (2024), p. 1469 | DOI:10.1109/lcsys.2024.3410632
  • Sebastian Grube Strong solutions to McKean-Vlasov SDEs with coefficients of Nemytskii type: the time-dependent case, Journal of Evolution Equations, Volume 24 (2024) no. 2, p. 14 (Id/No 37) | DOI:10.1007/s00028-024-00970-x | Zbl:1552.60149
  • Indranil Chowdhury; Espen R. Jakobsen; Miłosz Krupski On fully nonlinear parabolic mean field games with nonlocal and local diffusions, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 5, pp. 6302-6336 | DOI:10.1137/23m1615528 | Zbl:1551.35437
  • Sebastian Grube Strong solutions to McKean-Vlasov SDEs with coefficients of Nemytskii-type, Electronic Communications in Probability, Volume 28 (2023), p. 13 (Id/No 11) | DOI:10.1214/23-ecp519 | Zbl:1517.60062
  • Ştefana-Lucia Aniţa Optimal control of stochastic differential equations via Fokker-Planck equations, Applied Mathematics and Optimization, Volume 84 (2021), pp. 1555-1583 | DOI:10.1007/s00245-021-09804-5 | Zbl:1485.93621
  • Vladimir I. Bogachev; Michael Röckner; Stanislav V. Shaposhnikov On the Ambrosio-Figalli-Trevisan superposition principle for probability solutions to Fokker-Planck-Kolmogorov equations, Journal of Dynamics and Differential Equations, Volume 33 (2021) no. 2, pp. 715-739 | DOI:10.1007/s10884-020-09828-5 | Zbl:1474.60185
  • Chunrong Feng; Huaizhong Zhao; Johnny Zhong Expected exit time for time-periodic stochastic differential equations and applications to stochastic resonance, Physica D, Volume 417 (2021), p. 18 (Id/No 132815) | DOI:10.1016/j.physd.2020.132815 | Zbl:1487.60106
  • Michael Röckner; Longjie Xie; Xicheng Zhang Superposition principle for non-local Fokker-Planck-Kolmogorov operators, Probability Theory and Related Fields, Volume 178 (2020) no. 3-4, pp. 699-733 | DOI:10.1007/s00440-020-00985-8 | Zbl:1469.60196
  • Huaiqian Li; Dejun Luo Quantitative stability estimates for Fokker-Planck equations, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 122 (2019), pp. 125-163 | DOI:10.1016/j.matpur.2018.08.003 | Zbl:1406.35412
  • Thierry Goudon; Alexis F. Vasseur Statistical stability for transport in random media, Multiscale Modeling Simulation, Volume 17 (2019) no. 1, pp. 507-530 | DOI:10.1137/18m1184643 | Zbl:1426.82047
  • Xicheng Zhang Stochastic Hamiltonian flows with singular coefficients, Science China. Mathematics, Volume 61 (2018) no. 8, pp. 1353-1384 | DOI:10.1007/s11425-017-9127-0 | Zbl:1409.60093
  • Benjamin Gess Regularization and Well-Posedness by Noise for Ordinary and Partial Differential Equations, Stochastic Partial Differential Equations and Related Fields, Volume 229 (2018), p. 43 | DOI:10.1007/978-3-319-74929-7_3
  • Dejun Luo The Itô SDEs and Fokker-Planck equations with Osgood and Sobolev coefficients, Stochastics, Volume 90 (2018) no. 3, pp. 379-410 | DOI:10.1080/17442508.2017.1357723 | Zbl:1498.60228
  • Nicolas Champagnat; Pierre-Emmanuel Jabin Strong solutions to stochastic differential equations with rough coefficients, The Annals of Probability, Volume 46 (2018) no. 3, pp. 1498-1541 | DOI:10.1214/17-aop1208 | Zbl:1451.60091
  • Oxana A. Manita; Stanislav V. Shaposhnikov On the Cauchy problem for Fokker-Planck-Kolmogorov equations with potential terms on arbitrary domains, Journal of Dynamics and Differential Equations, Volume 28 (2016) no. 2, pp. 493-518 | DOI:10.1007/s10884-015-9453-y | Zbl:1348.35092
  • Huaiqian Li; Dejun Luo A unified treatment for ODEs under Osgood and Sobolev type conditions, Bulletin des Sciences Mathématiques, Volume 139 (2015) no. 1, pp. 114-133 | DOI:10.1016/j.bulsci.2014.08.005 | Zbl:1351.37084
  • V. I. Bogachev; M. Röckner; S. V. Shaposhnikov Uniqueness problems for degenerate Fokker-Planck-Kolmogorov equations, Journal of Mathematical Sciences (New York), Volume 207 (2015) no. 2, pp. 147-165 | DOI:10.1007/s10958-015-2362-0 | Zbl:1321.35242
  • Paul M. N. Feehan; Camelia A. Pop On the martingale problem for degenerate-parabolic partial differential operators with unbounded coefficients and a mimicking theorem for Itô processes, Transactions of the American Mathematical Society, Volume 367 (2015) no. 11, pp. 7565-7593 | DOI:10.1090/tran/6243 | Zbl:1330.60062
  • Dejun Luo Uniqueness of degenerate Fokker-Planck equations with weakly differentiable drift whose gradient is given by a singular integral, Electronic Communications in Probability, Volume 19 (2014) no. none | DOI:10.1214/ecp.v19-3407
  • De Jun Luo Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients, Acta Mathematica Sinica. English Series, Volume 29 (2013) no. 2, pp. 303-314 | DOI:10.1007/s10114-012-1302-x | Zbl:1318.35130
  • Xicheng Zhang Degenerate irregular SDEs with jumps and application to integro-differential equations of Fokker-Planck type, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2820
  • Sven Wiesinger Uniqueness for solutions of Fokker-Planck equations related to singular SPDE driven by Lévy and cylindrical Wiener noise, Journal of Evolution Equations, Volume 13 (2013) no. 2, pp. 369-394 | DOI:10.1007/s00028-013-0183-5 | Zbl:1273.60078
  • Vladimir I. Bogachev; Michael Röckner; Stanislav V. Shaposhnikov On uniqueness of solutions to the Cauchy problem for degenerate Fokker-Planck-Kolmogorov equations, Journal of Evolution Equations, Volume 13 (2013) no. 3, pp. 577-593 | DOI:10.1007/s00028-013-0191-5 | Zbl:1273.35271
  • Jinlong Wei; Bin Liu Lp-solutions of Fokker-Planck equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 85 (2013), pp. 110-124 | DOI:10.1016/j.na.2013.02.022 | Zbl:1278.35247
  • S. V. Shaposhnikov On Uniqueness of a Probability Solution to the Cauchy Problem for the Fokker–Planck–Kolmogorov Equation, Theory of Probability Its Applications, Volume 56 (2012) no. 1, p. 96 | DOI:10.1137/s0040585x97985212
  • S. V. Shaposhnikov On the uniqueness of integrable and probability solutions to the Cauchy problem for the Fokker-Planck-Kolmogorov equations, Doklady Mathematics, Volume 84 (2011) no. 1, pp. 565-570 | DOI:10.1134/s106456241104020x | Zbl:1235.35274
  • V. I. Bogachev; M. Röckner; S. V. Shaposhnikov On uniqueness problems related to the Fokker-Planck-Kolmogorov equation for measures, Journal of Mathematical Sciences (New York), Volume 179 (2011) no. 1, pp. 7-47 | DOI:10.1007/s10958-011-0581-6 | Zbl:1291.35425
  • Jie Ren; Xicheng Zhang Limit Theorems for Stochastic Differential Equations with Discontinuous Coefficients, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 1, p. 302 | DOI:10.1137/10078952x

Cité par 30 documents. Sources : Crossref, zbMATH

Commentaires - Politique