Comptes Rendus
Partial Differential Equations/Optimal Control
Carleman estimates for degenerate parabolic equations with first order terms and applications
[Une inégalitée de Carleman pour une équation parabolique dégenerée avec des termes de premier ordre et applications]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 391-396.

Dans cette Note on montre une inégalité de Carleman pour une équation unidimensionelle parabolique dégenerée

vt+(xαvx)xb(x,t)v+(xβ/2c(x,t)v)x=0,(x,t)(0,1)×(0,T),
α[0,2), βα et b(x,t),c(x,t)L((0,1)×(0,T)) et on donne des conséquences en controllabilitée.

In this Note we prove a Carleman estimate for the one-dimensional degenerate parabolic equation

vt+(xαvx)xb(x,t)v+(xβ/2c(x,t)v)x=0,(x,t)(0,1)×(0,T),
where α[0,2), βα and b(x,t),c(x,t)L((0,1)×(0,T)) and give some controllability consequences.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.01.007

Carmelo Flores 1 ; Luz de Teresa 2

1 Universidad Autónoma de la Ciudad de México, Prolongacion San Isidro, 151 San Lorenzo Tezonco Delegac, 09790 Mexico, Distrito Federal, Mexico
2 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico
@article{CRMATH_2010__348_7-8_391_0,
     author = {Carmelo Flores and Luz de Teresa},
     title = {Carleman estimates for degenerate parabolic equations with first order terms and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {391--396},
     publisher = {Elsevier},
     volume = {348},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crma.2010.01.007},
     language = {en},
}
TY  - JOUR
AU  - Carmelo Flores
AU  - Luz de Teresa
TI  - Carleman estimates for degenerate parabolic equations with first order terms and applications
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 391
EP  - 396
VL  - 348
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2010.01.007
LA  - en
ID  - CRMATH_2010__348_7-8_391_0
ER  - 
%0 Journal Article
%A Carmelo Flores
%A Luz de Teresa
%T Carleman estimates for degenerate parabolic equations with first order terms and applications
%J Comptes Rendus. Mathématique
%D 2010
%P 391-396
%V 348
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2010.01.007
%G en
%F CRMATH_2010__348_7-8_391_0
Carmelo Flores; Luz de Teresa. Carleman estimates for degenerate parabolic equations with first order terms and applications. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 391-396. doi : 10.1016/j.crma.2010.01.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.007/

[1] F. Alabau-Boussouira; P. Cannarsa; G. Fragnelli Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 161-204

[2] M. Campiti; G. Metafune; D. Pallara Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, Volume 57 (1998), pp. 1-36

[3] P. Cannarsa; G. Fragnelli Null controllability of semilinear degenerate parabolic equations in bounded domains, EJDE, Volume 136 (2006), pp. 1-20

[4] P. Cannarsa; G. Fragnelli; J. Vancostenoble Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl., Volume 320 (2006) no. 2, pp. 804-818

[5] P. Cannarsa; G. Fragnelli; D. Rocchetti Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, Volume 2 (2007) no. 4, pp. 695-715 (electronic)

[6] P. Cannarsa; P. Martinez; J. Vancostenoble Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., Volume 3 (2004), pp. 607-635

[7] P. Cannarsa; P. Martinez; J. Vancostenoble Carleman estimates for degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19

[8] P. Cannarsa; L. de Teresa Insensitizing controls for one-dimensional degenerate parabolic equations, EJDE, Volume 2009 (2009) no. 73, pp. 1-21

[9] C. Flores, L. de Teresa, Null controllability of one-dimensional degenerate parabolic equations with first order terms, in preparation

[10] O.Yu. Imanuvilov; M. Yamamoto Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., Volume 39 (2003) no. 2, pp. 227-274

[11] J.-L. Lions; E. Magenes Non-Homogeneous Boundary Value Problems and Applications, vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York/Heidelberg, 1972

[12] P. Martinez; J. Vancostenoble Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 325-362

[13] B. Opic; A. Kufner Hardy-Type Inequalities, Longman Scientific and Technical, Harlow, UK, 1990

Cité par Sources :

Commentaires - Politique