Comptes Rendus
Partial Differential Equations/Optimal Control
Carleman estimates for degenerate parabolic equations with first order terms and applications
[Une inégalitée de Carleman pour une équation parabolique dégenerée avec des termes de premier ordre et applications]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 391-396.

Dans cette Note on montre une inégalité de Carleman pour une équation unidimensionelle parabolique dégenerée

vt+(xαvx)xb(x,t)v+(xβ/2c(x,t)v)x=0,(x,t)(0,1)×(0,T),
α[0,2), βα et b(x,t),c(x,t)L((0,1)×(0,T)) et on donne des conséquences en controllabilitée.

In this Note we prove a Carleman estimate for the one-dimensional degenerate parabolic equation

vt+(xαvx)xb(x,t)v+(xβ/2c(x,t)v)x=0,(x,t)(0,1)×(0,T),
where α[0,2), βα and b(x,t),c(x,t)L((0,1)×(0,T)) and give some controllability consequences.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.01.007

Carmelo Flores 1 ; Luz de Teresa 2

1 Universidad Autónoma de la Ciudad de México, Prolongacion San Isidro, 151 San Lorenzo Tezonco Delegac, 09790 Mexico, Distrito Federal, Mexico
2 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico
@article{CRMATH_2010__348_7-8_391_0,
     author = {Carmelo Flores and Luz de Teresa},
     title = {Carleman estimates for degenerate parabolic equations with first order terms and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {391--396},
     publisher = {Elsevier},
     volume = {348},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crma.2010.01.007},
     language = {en},
}
TY  - JOUR
AU  - Carmelo Flores
AU  - Luz de Teresa
TI  - Carleman estimates for degenerate parabolic equations with first order terms and applications
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 391
EP  - 396
VL  - 348
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2010.01.007
LA  - en
ID  - CRMATH_2010__348_7-8_391_0
ER  - 
%0 Journal Article
%A Carmelo Flores
%A Luz de Teresa
%T Carleman estimates for degenerate parabolic equations with first order terms and applications
%J Comptes Rendus. Mathématique
%D 2010
%P 391-396
%V 348
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2010.01.007
%G en
%F CRMATH_2010__348_7-8_391_0
Carmelo Flores; Luz de Teresa. Carleman estimates for degenerate parabolic equations with first order terms and applications. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 391-396. doi : 10.1016/j.crma.2010.01.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.007/

[1] F. Alabau-Boussouira; P. Cannarsa; G. Fragnelli Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 161-204

[2] M. Campiti; G. Metafune; D. Pallara Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, Volume 57 (1998), pp. 1-36

[3] P. Cannarsa; G. Fragnelli Null controllability of semilinear degenerate parabolic equations in bounded domains, EJDE, Volume 136 (2006), pp. 1-20

[4] P. Cannarsa; G. Fragnelli; J. Vancostenoble Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl., Volume 320 (2006) no. 2, pp. 804-818

[5] P. Cannarsa; G. Fragnelli; D. Rocchetti Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, Volume 2 (2007) no. 4, pp. 695-715 (electronic)

[6] P. Cannarsa; P. Martinez; J. Vancostenoble Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., Volume 3 (2004), pp. 607-635

[7] P. Cannarsa; P. Martinez; J. Vancostenoble Carleman estimates for degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19

[8] P. Cannarsa; L. de Teresa Insensitizing controls for one-dimensional degenerate parabolic equations, EJDE, Volume 2009 (2009) no. 73, pp. 1-21

[9] C. Flores, L. de Teresa, Null controllability of one-dimensional degenerate parabolic equations with first order terms, in preparation

[10] O.Yu. Imanuvilov; M. Yamamoto Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., Volume 39 (2003) no. 2, pp. 227-274

[11] J.-L. Lions; E. Magenes Non-Homogeneous Boundary Value Problems and Applications, vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York/Heidelberg, 1972

[12] P. Martinez; J. Vancostenoble Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 325-362

[13] B. Opic; A. Kufner Hardy-Type Inequalities, Longman Scientific and Technical, Harlow, UK, 1990

  • Wei Guo; Mingjun Zhou; Ningning Man Carleman estimate and null controllability for a degenerate convection–diffusion equation, Computational and Applied Mathematics, Volume 44 (2025) no. 4 | DOI:10.1007/s40314-025-03165-3
  • Leandro Galo-Mendoza; Marcos López-García Boundary controllability for a 1D degenerate parabolic equation with drift, a singular potential, and a Neumann boundary condition, Boletín de la Sociedad Matemática Mexicana, Volume 30 (2024) no. 2 | DOI:10.1007/s40590-024-00638-z
  • Landry Djomegne; Cyrille Kenne; René Dorville; Pascal Zongo Hierarchical null controllability of a semilinear degenerate parabolic equation with a gradient term, Optimization (2024), p. 1 | DOI:10.1080/02331934.2024.2394608
  • Chunpeng Wang; Yanan Zhou Carleman estimate and null controllability for a degenerate parabolic equation with a slightly superlinear reaction term, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 5 | DOI:10.1007/s00030-023-00881-9
  • J. C. O. Faria Carleman Estimates and Observability Inequalities for a Class of Problems Ruled by Parabolic Equations with Interior Degenaracy, Applied Mathematics Optimization, Volume 84 (2021) no. 1, p. 463 | DOI:10.1007/s00245-019-09651-5
  • Fengdan Xu; Qian Zhou; Yuanyuan Nie Approximate Controllability of a Class of Semilinear Coupled Degenerate Systems, Journal of Dynamical and Control Systems, Volume 27 (2021) no. 1, p. 31 | DOI:10.1007/s10883-020-09484-4
  • Fengdan Xu; Qian Zhou; Yuanyuan Nie Null controllability of a semilinear degenerate parabolic equation with a gradient term, Boundary Value Problems, Volume 2020 (2020) no. 1 | DOI:10.1186/s13661-020-01351-2
  • Runmei Du Null controllability for a class of degenerate parabolic equations with the gradient terms, Journal of Evolution Equations, Volume 19 (2019) no. 2, p. 585 | DOI:10.1007/s00028-019-00487-8
  • Idriss Boutaayamou; Genni Fragnelli; Lahcen Maniar Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, Journal d'Analyse Mathématique, Volume 135 (2018) no. 1, p. 1 | DOI:10.1007/s11854-018-0030-2
  • Runmei Du; Fengdan Xu Null Controllability of a Coupled Degenerate System with the First Order Terms, Journal of Dynamical and Control Systems, Volume 24 (2018) no. 1, p. 83 | DOI:10.1007/s10883-016-9353-4
  • F. D. Araruna; B. S. V. Araújo; E. Fernández-Cara Stackelberg–Nash null controllability for some linear and semilinear degenerate parabolic equations, Mathematics of Control, Signals, and Systems, Volume 30 (2018) no. 3 | DOI:10.1007/s00498-018-0220-6
  • Runmei Du; Fengdan Xu On the boundary controllability of a semilinear degenerate system with the convection term, Applied Mathematics and Computation, Volume 303 (2017), p. 113 | DOI:10.1016/j.amc.2017.01.008
  • M.M. Cavalcanti; E. Fernández-Cara; A.L. Ferreira Null controllability of some nonlinear degenerate 1D parabolic equations, Journal of the Franklin Institute, Volume 354 (2017) no. 14, p. 6405 | DOI:10.1016/j.jfranklin.2017.08.015
  • Philippe Martin; Lionel Rosier; Pierre Rouchon Null Controllability of One-dimensional Parabolic Equations by the Flatness Approach, SIAM Journal on Control and Optimization, Volume 54 (2016) no. 1, p. 198 | DOI:10.1137/14099245x
  • Karine Beauchard; Bernard Helffer; Raphael Henry; Luc Robbiano Degenerate parabolic operators of Kolmogorov type with a geometric control condition, ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 2, p. 487 | DOI:10.1051/cocv/2014035
  • Karine Beauchard; Luc Miller; Morgan Morancey 2d Grushin-type equations: Minimal time and null controllable data, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 5813 | DOI:10.1016/j.jde.2015.07.007
  • Runmei Du Approximate Controllability of the Degenerate System with the First-Order Term, Journal of Function Spaces, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/151484
  • Runmei Du; Chunpeng Wang; Qian Zhou Approximate Controllability of a Semilinear System Involving a Fully Nonlinear Gradient Term, Applied Mathematics Optimization, Volume 70 (2014) no. 1, p. 165 | DOI:10.1007/s00245-014-9238-4
  • Runmei Du Approximate controllability of a class of semilinear degenerate systems with boundary control, Journal of Differential Equations, Volume 256 (2014) no. 9, p. 3141 | DOI:10.1016/j.jde.2014.01.034
  • K. Beauchard Null controllability of Kolmogorov-type equations, Mathematics of Control, Signals, and Systems, Volume 26 (2014) no. 1, p. 145 | DOI:10.1007/s00498-013-0110-x
  • Genni Fragnelli; Gabriela Marinoschi; Rosa Maria Mininni; Silvia Romanelli A Control Approach for an Identification Problem Associated to a Strongly Degenerate Parabolic System with Interior Degeneracy, New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Volume 10 (2014), p. 121 | DOI:10.1007/978-3-319-11406-4_7
  • Chunpeng Wang; Runmei Du Carleman Estimates and Null Controllability for a Class of Degenerate Parabolic Equations with Convection Terms, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 3, p. 1457 | DOI:10.1137/110820592
  • Karine Beauchard Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type, Séminaire Laurent Schwartz — EDP et applications (2014), p. 1 | DOI:10.5802/slsedp.26
  • Runmei Du; Chunpeng Wang Null controllability of a class of systems governed by coupled degenerate equations, Applied Mathematics Letters, Volume 26 (2013) no. 1, p. 113 | DOI:10.1016/j.aml.2012.04.005
  • A Lorenzi; L Lorenzi A strongly ill-posed problem for a degenerate parabolic equation with unbounded coefficients in an unbounded domain Ω×O of RM+N, Inverse Problems, Volume 29 (2013) no. 2, p. 025007 | DOI:10.1088/0266-5611/29/2/025007
  • Chunpeng Wang; Runmei Du Approximate controllability of a class of semilinear degenerate systems with convection term, Journal of Differential Equations, Volume 254 (2013) no. 9, p. 3665 | DOI:10.1016/j.jde.2013.01.038

Cité par 26 documents. Sources : Crossref

Commentaires - Politique