Given a regular map on a smooth variety U we define a motivic Milnor fiber at infinity and we compute it in the case of a non-degenerate Laurent polynomial for its Newton polyhedra at infinity.
Pour une application régulière à source lisse, nous définissons une fibre de Milnor motivique à l'infini et nous la calculons dans le cas d'un polynôme de Laurent non dégénéré pour son polyèdre de Newton à l'infini.
Accepted:
Published online:
Michel Raibaut 1
@article{CRMATH_2010__348_7-8_419_0, author = {Michel Raibaut}, title = {Fibre de {Milnor} motivique \`a l'infini}, journal = {Comptes Rendus. Math\'ematique}, pages = {419--422}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2010.01.008}, language = {fr}, }
Michel Raibaut. Fibre de Milnor motivique à l'infini. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 419-422. doi : 10.1016/j.crma.2010.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.008/
[1] Geometry on arc spaces of algebraic varieties, Barcelona, 2000 (Progr. Math.), Volume vol. 201, Birkhäuser (2001), pp. 327-348
[2] Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998), pp. 505-537
[3] Hodge numbers attached to a polynomial map, Ann. Inst. Fourier (Grenoble), Volume 49 (1999), pp. 1547-1579
[4] Espaces d'arcs et invariants d'Alexander, Comment. Math. Helv., Volume 77 (2002), pp. 783-820
[5] Nearby cycles and composition with a nondegenerate polynomial, Internat. Math. Res. Notices, Volume 31 (2005), pp. 1873-1888
[6] Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Volume 132 (2006), pp. 409-457
[7] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31
[8] Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves | arXiv
[9] Monodromy at infinity of polynomial map and mixed Hodge modules | arXiv
[10] Semicontinuity of the spectrum at infinity, Abh. Math. Sem. Univ. Hamburg, Volume 69 (1999), pp. 25-35
[11] Mixed Hodge Structures, Springer-Verlag, 2008
[12] Vanishing homologies and the n variable saddlepoint method, Proc. Symp. Pure Math., vol. 40, 1983, pp. 319-333
[13] Monodromy at infinity and Fourier transform, Publ. Res. Inst. Math. Sci., Volume 33 (1997), pp. 643-685
[14] Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990), pp. 221-333
Cited by Sources:
Comments - Policy