In Najnudel and Nikeghbali (2009) [7], we prove that for any submartingale of class (Σ), defined on a filtered probability space , which satisfies some technical conditions, one can construct a σ-finite measure on , such that for all , and for all events :
Dans Najnudel et Nikeghbali (2009) [7], nous prouvons que pour toute sous-martingale de classe (Σ), définie sur un espace de probabilité filtré , satisfaisant certaines conditions techniques, on peut construire une mesure σ-finie sur , telle que pour tout , et pour tout événement :
Accepted:
Published online:
Joseph Najnudel 1; Ashkan Nikeghbali 1
@article{CRMATH_2010__348_5-6_311_0, author = {Joseph Najnudel and Ashkan Nikeghbali}, title = {A new construction of the \protect\emph{\ensuremath{\sigma}}-finite measures associated with submartingales of class {(\protect\emph{\ensuremath{\Sigma}})}}, journal = {Comptes Rendus. Math\'ematique}, pages = {311--316}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.021}, language = {en}, }
TY - JOUR AU - Joseph Najnudel AU - Ashkan Nikeghbali TI - A new construction of the σ-finite measures associated with submartingales of class (Σ) JO - Comptes Rendus. Mathématique PY - 2010 SP - 311 EP - 316 VL - 348 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2010.01.021 LA - en ID - CRMATH_2010__348_5-6_311_0 ER -
Joseph Najnudel; Ashkan Nikeghbali. A new construction of the σ-finite measures associated with submartingales of class (Σ). Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 311-316. doi : 10.1016/j.crma.2010.01.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.021/
[1] A. Bentata, M. Yor, From Black–Scholes and Dupire formulae to last passage times of local martingales. Part A: The infinite time horizon, 2008
[2] Stochastic Integration and Stochastic Differential Equations, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 2002
[3] Processes of the class sigma, last zero and draw-down processes, 2009 | arXiv
[4] D. Madan, B. Roynette, M. Yor, From Black–Scholes formula, to local times and last passage times for certain submartingales, Prépublication IECN 2008/14
[5] A new kind of augmentation of filtrations, 2009 | arXiv
[6] On some properties of a universal sigma-finite measure associated with a remarkable class of submartingales, 2009 | arXiv
[7] On some universal σ-finite measures and some extensions of Doob's optional stopping theorem, 2009 | arXiv
[8] A global view of Brownian penalisations, MSJ Memoirs, vol. 19, Mathematical Society of Japan, Tokyo, 2009
[9] A class of remarkable submartingales, Stochastic Process. Appl., Volume 116 (2006) no. 6, pp. 917-938
[10] Probability Measures on Metric Spaces, Academic Press, New York, 1967
[11] Option Prices as Probabilities: A New Look at Generalized Black–Scholes Formulae, Springer Finance, 2010
[12] Multidimensional Diffusion Processes, Classics in Mathematics, Springer-Verlag, Berlin, 2006 (reprint of the 1997 edition)
[13] Les inégalités de sous-martingales, comme conséquences de la relation de domination, Stochastics, Volume 3 (1979) no. 1, pp. 1-15
Cited by Sources:
Comments - Policy