Comptes Rendus
Functional Analysis/Probability Theory
Time irregularity of generalized Ornstein–Uhlenbeck processes
[Irrégularité en temps des processus Ornstein–Uhlenbeck généralisés]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 273-276.

Dans cette Note on traite les propriétés de solutions d'équations d'évolution linéaires perturbées par des processus de Lévy cylindriques. Sous des conditions assez faibles, on trouve que les solutions ne possèdent pas de modifications càdlàg. On énonce quelques questions naturelles s'en déduisant.

This Note is concerned with the properties of solutions to a linear evolution equation perturbed by a cylindrical Lévy process. It turns out that solutions, under rather weak requirements, do not have a càdlàg modification. Some natural open questions are also stated.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.01.022

Zdzisław Brzeźniak 1 ; Ben Goldys 2 ; Peter Imkeller 3 ; Szymon Peszat 4 ; Enrico Priola 5 ; Jerzy Zabczyk 6

1 Department of Mathematics, The University of York, Heslington, York YO10 5DD, UK
2 School of Mathematics, The University of New South Wales, Sydney 2052, Australia
3 Institut für Mathematik, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
4 Institute of Mathematics, Polish Academy of Sciences, Św. Tomasza 30/7, 31-027 Kraków, Poland
5 Dipartimento di Matematica, Universita di Torino, via Carlo Alberto 10, 10-123 Torino, Italy
6 Institute of Mathematics, Polish Academy of Sciences, 00-950 Warszawa, Poland
@article{CRMATH_2010__348_5-6_273_0,
     author = {Zdzis{\l}aw Brze\'zniak and Ben Goldys and Peter Imkeller and Szymon Peszat and Enrico Priola and Jerzy Zabczyk},
     title = {Time irregularity of generalized {Ornstein{\textendash}Uhlenbeck} processes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {273--276},
     publisher = {Elsevier},
     volume = {348},
     number = {5-6},
     year = {2010},
     doi = {10.1016/j.crma.2010.01.022},
     language = {en},
}
TY  - JOUR
AU  - Zdzisław Brzeźniak
AU  - Ben Goldys
AU  - Peter Imkeller
AU  - Szymon Peszat
AU  - Enrico Priola
AU  - Jerzy Zabczyk
TI  - Time irregularity of generalized Ornstein–Uhlenbeck processes
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 273
EP  - 276
VL  - 348
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2010.01.022
LA  - en
ID  - CRMATH_2010__348_5-6_273_0
ER  - 
%0 Journal Article
%A Zdzisław Brzeźniak
%A Ben Goldys
%A Peter Imkeller
%A Szymon Peszat
%A Enrico Priola
%A Jerzy Zabczyk
%T Time irregularity of generalized Ornstein–Uhlenbeck processes
%J Comptes Rendus. Mathématique
%D 2010
%P 273-276
%V 348
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2010.01.022
%G en
%F CRMATH_2010__348_5-6_273_0
Zdzisław Brzeźniak; Ben Goldys; Peter Imkeller; Szymon Peszat; Enrico Priola; Jerzy Zabczyk. Time irregularity of generalized Ornstein–Uhlenbeck processes. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 273-276. doi : 10.1016/j.crma.2010.01.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.022/

[1] D. Applebaum Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, vol. 93, Cambridge University Press, Cambridge, 2004

[2] Z. Brzeźniak; J. Zabczyk Regularity of Ornstein–Uhlenbeck processes driven by a Lévy white noise, Potential Anal., Volume 32 (2010) no. 2, pp. 153-188

[3] G. Da Prato; J. Zabczyk Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992

[4] I. Iscoe; M.B. Marcus; D. McDonald; M. Talagrand; J. Zinn Continuity of l2-valued Ornstein–Uhlenbeck processes, Ann. Probab., Volume 18 (1990), pp. 68-84

[5] P. Kotelenez A maximal inequality for stochastic convolution integrals on Hilbert spaces and space-time regularity of linear stochastic partial differential equations, Stochastics, Volume 21 (1987), pp. 345-458

[6] S. Peszat; J. Zabczyk Stochastic Partial Differential Equations with Lévy Noise, Cambridge University Press, Cambridge, 2007

[7] E. Priola, J. Zabczyk, On linear evolution with cylindrical Lévy noise, in: G. Da Prato, L. Tubaro (Eds.), Stochastic Partial Differential Equations and Applications VIII, Proceedings of the Levico 2008 Conference

[8] E. Priola, J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, in press

  • Xuhui Peng; Juan Yang; Jianliang Zhai Well-posedness of stochastic 2D hydrodynamics type systems with multiplicative Lévy noises, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp779
  • Gergely Bodó; Markus Riedle Stochastic integration with respect to canonical α-stable cylindrical Lévy processes, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp884
  • Tomasz Kosmala; Markus Riedle Variational solutions of stochastic partial differential equations with cylindrical Lévy noise, Discrete Continuous Dynamical Systems - B, Volume 26 (2021) no. 6, p. 2879 | DOI:10.3934/dcdsb.2020209
  • Umesh Kumar; Markus Riedle The stochastic Cauchy problem driven by a cylindrical Lévy process, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/19-ejp407
  • Jan van Neerven; Mark Veraar Maximal inequalities for stochastic convolutions in 2-smooth Banach spaces and applications to stochastic evolution equations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 378 (2020) no. 2185, p. 20190622 | DOI:10.1098/rsta.2019.0622
  • Carsten Chong; Robert C. Dalang; Thomas Humeau Path properties of the solution to the stochastic heat equation with Lévy noise, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 7 (2019) no. 1, p. 123 | DOI:10.1007/s40072-018-0124-y
  • Zdzisław Brzeźniak; Erika Hausenblas; Paul André Razafimandimby Stochastic Reaction-diffusion Equations Driven by Jump Processes, Potential Analysis, Volume 49 (2018) no. 1, p. 131 | DOI:10.1007/s11118-017-9651-9
  • Alexei Kulik; Michael Scheutzow Generalized couplings and convergence of transition probabilities, Probability Theory and Related Fields, Volume 171 (2018) no. 1-2, p. 333 | DOI:10.1007/s00440-017-0779-8
  • Jiahui Zhu; Zdzisław Brzeźniak; Erika Hausenblas Maximal inequalities for stochastic convolutions driven by compensated Poisson random measures in Banach spaces, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 53 (2017) no. 2 | DOI:10.1214/16-aihp743
  • Yong Liu; Jianliang Zhai Time Regularity of Generalized Ornstein–Uhlenbeck Processes with Lévy Noises in Hilbert Spaces, Journal of Theoretical Probability, Volume 29 (2016) no. 3, p. 843 | DOI:10.1007/s10959-015-0594-z
  • Markus Riedle Ornstein-Uhlenbeck Processes Driven by Cylindrical Lévy Processes, Potential Analysis, Volume 42 (2015) no. 4, p. 809 | DOI:10.1007/s11118-014-9458-x
  • David Applebaum Infinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes, Probability Surveys, Volume 12 (2015) no. none | DOI:10.1214/14-ps249
  • Jian Wang Linear Evolution Equations with Cylindrical Lévy Noise: Gradient Estimates and Exponential Ergodicity, Stochastic Analysis and Applications, Volume 33 (2015) no. 2, p. 306 | DOI:10.1080/07362994.2014.989330
  • Markus Riedle Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: An L2 approach, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 17 (2014) no. 01, p. 1450008 | DOI:10.1142/s0219025714500088
  • S. Peszat; J. Zabczyk Time regularity for stochastic Volterra equations by the dilation theorem, Journal of Mathematical Analysis and Applications, Volume 409 (2014) no. 2, p. 676 | DOI:10.1016/j.jmaa.2013.07.055
  • Zdzisław Brzeźniak; Erika Hausenblas; Elżbieta Motyl Uniqueness in Law of the stochastic convolution process driven by Lévy noise, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2807
  • E. Hausenblas; P. A. Razafimandimby; M. Sango Martingale Solution to Equations for Differential Type Fluids of Grade Two Driven by Random Force of Lévy Type, Potential Analysis, Volume 38 (2013) no. 4, p. 1291 | DOI:10.1007/s11118-012-9316-7
  • S. Peszat; J. Zabczyk Time regularity of solutions to linear equations with Lévy noise in infinite dimensions, Stochastic Processes and their Applications, Volume 123 (2013) no. 3, p. 719 | DOI:10.1016/j.spa.2012.10.012
  • Jiang-Lun Wu; Bin Xie On a Burgers type nonlinear equation perturbed by a pure jump Lévy noise in Rd, Bulletin des Sciences Mathématiques, Volume 136 (2012) no. 5, p. 484 | DOI:10.1016/j.bulsci.2011.07.015
  • Enrico Priola; Armen Shirikyan; Lihu Xu; Jerzy Zabczyk Exponential ergodicity and regularity for equations with Lévy noise, Stochastic Processes and their Applications, Volume 122 (2012) no. 1, p. 106 | DOI:10.1016/j.spa.2011.10.003
  • S. Peszat Lévy–Ornstein–Uhlenbeck transition semigroup as second quantized operator, Journal of Functional Analysis, Volume 260 (2011) no. 12, p. 3457 | DOI:10.1016/j.jfa.2011.03.002
  • ENRICO PRIOLA; LIHU XU; JERZY ZABCZYK EXPONENTIAL MIXING FOR SOME SPDEs WITH LÉVY NOISE, Stochastics and Dynamics, Volume 11 (2011) no. 02n03, p. 521 | DOI:10.1142/s0219493711003425

Cité par 22 documents. Sources : Crossref

Supported by the Polish Ministry of Science and Education project 1PO 3A 034 29 “Stochastic evolution equations with Lévy noise” and by EC FP6 Marie Curie ToK programme SPADE2.

Commentaires - Politique