[Irrégularité en temps des processus Ornstein–Uhlenbeck généralisés]
Dans cette Note on traite les propriétés de solutions d'équations d'évolution linéaires perturbées par des processus de Lévy cylindriques. Sous des conditions assez faibles, on trouve que les solutions ne possèdent pas de modifications càdlàg. On énonce quelques questions naturelles s'en déduisant.
This Note is concerned with the properties of solutions to a linear evolution equation perturbed by a cylindrical Lévy process. It turns out that solutions, under rather weak requirements, do not have a càdlàg modification. Some natural open questions are also stated.
Accepté le :
Publié le :
Zdzisław Brzeźniak 1 ; Ben Goldys 2 ; Peter Imkeller 3 ; Szymon Peszat 4 ; Enrico Priola 5 ; Jerzy Zabczyk 6
@article{CRMATH_2010__348_5-6_273_0, author = {Zdzis{\l}aw Brze\'zniak and Ben Goldys and Peter Imkeller and Szymon Peszat and Enrico Priola and Jerzy Zabczyk}, title = {Time irregularity of generalized {Ornstein{\textendash}Uhlenbeck} processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--276}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.022}, language = {en}, }
TY - JOUR AU - Zdzisław Brzeźniak AU - Ben Goldys AU - Peter Imkeller AU - Szymon Peszat AU - Enrico Priola AU - Jerzy Zabczyk TI - Time irregularity of generalized Ornstein–Uhlenbeck processes JO - Comptes Rendus. Mathématique PY - 2010 SP - 273 EP - 276 VL - 348 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2010.01.022 LA - en ID - CRMATH_2010__348_5-6_273_0 ER -
%0 Journal Article %A Zdzisław Brzeźniak %A Ben Goldys %A Peter Imkeller %A Szymon Peszat %A Enrico Priola %A Jerzy Zabczyk %T Time irregularity of generalized Ornstein–Uhlenbeck processes %J Comptes Rendus. Mathématique %D 2010 %P 273-276 %V 348 %N 5-6 %I Elsevier %R 10.1016/j.crma.2010.01.022 %G en %F CRMATH_2010__348_5-6_273_0
Zdzisław Brzeźniak; Ben Goldys; Peter Imkeller; Szymon Peszat; Enrico Priola; Jerzy Zabczyk. Time irregularity of generalized Ornstein–Uhlenbeck processes. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 273-276. doi : 10.1016/j.crma.2010.01.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.022/
[1] Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, vol. 93, Cambridge University Press, Cambridge, 2004
[2] Regularity of Ornstein–Uhlenbeck processes driven by a Lévy white noise, Potential Anal., Volume 32 (2010) no. 2, pp. 153-188
[3] Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992
[4] Continuity of -valued Ornstein–Uhlenbeck processes, Ann. Probab., Volume 18 (1990), pp. 68-84
[5] A maximal inequality for stochastic convolution integrals on Hilbert spaces and space-time regularity of linear stochastic partial differential equations, Stochastics, Volume 21 (1987), pp. 345-458
[6] Stochastic Partial Differential Equations with Lévy Noise, Cambridge University Press, Cambridge, 2007
[7] E. Priola, J. Zabczyk, On linear evolution with cylindrical Lévy noise, in: G. Da Prato, L. Tubaro (Eds.), Stochastic Partial Differential Equations and Applications VIII, Proceedings of the Levico 2008 Conference
[8] E. Priola, J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, in press
Cité par Sources :
☆ Supported by the Polish Ministry of Science and Education project 1PO 3A 034 29 “Stochastic evolution equations with Lévy noise” and by EC FP6 Marie Curie ToK programme SPADE2.
Commentaires - Politique