[Irrégularité en temps des processus Ornstein–Uhlenbeck généralisés]
Dans cette Note on traite les propriétés de solutions d'équations d'évolution linéaires perturbées par des processus de Lévy cylindriques. Sous des conditions assez faibles, on trouve que les solutions ne possèdent pas de modifications càdlàg. On énonce quelques questions naturelles s'en déduisant.
This Note is concerned with the properties of solutions to a linear evolution equation perturbed by a cylindrical Lévy process. It turns out that solutions, under rather weak requirements, do not have a càdlàg modification. Some natural open questions are also stated.
Accepté le :
Publié le :
Zdzisław Brzeźniak 1 ; Ben Goldys 2 ; Peter Imkeller 3 ; Szymon Peszat 4 ; Enrico Priola 5 ; Jerzy Zabczyk 6
@article{CRMATH_2010__348_5-6_273_0, author = {Zdzis{\l}aw Brze\'zniak and Ben Goldys and Peter Imkeller and Szymon Peszat and Enrico Priola and Jerzy Zabczyk}, title = {Time irregularity of generalized {Ornstein{\textendash}Uhlenbeck} processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--276}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.022}, language = {en}, }
TY - JOUR AU - Zdzisław Brzeźniak AU - Ben Goldys AU - Peter Imkeller AU - Szymon Peszat AU - Enrico Priola AU - Jerzy Zabczyk TI - Time irregularity of generalized Ornstein–Uhlenbeck processes JO - Comptes Rendus. Mathématique PY - 2010 SP - 273 EP - 276 VL - 348 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2010.01.022 LA - en ID - CRMATH_2010__348_5-6_273_0 ER -
%0 Journal Article %A Zdzisław Brzeźniak %A Ben Goldys %A Peter Imkeller %A Szymon Peszat %A Enrico Priola %A Jerzy Zabczyk %T Time irregularity of generalized Ornstein–Uhlenbeck processes %J Comptes Rendus. Mathématique %D 2010 %P 273-276 %V 348 %N 5-6 %I Elsevier %R 10.1016/j.crma.2010.01.022 %G en %F CRMATH_2010__348_5-6_273_0
Zdzisław Brzeźniak; Ben Goldys; Peter Imkeller; Szymon Peszat; Enrico Priola; Jerzy Zabczyk. Time irregularity of generalized Ornstein–Uhlenbeck processes. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 273-276. doi : 10.1016/j.crma.2010.01.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.022/
[1] Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, vol. 93, Cambridge University Press, Cambridge, 2004
[2] Regularity of Ornstein–Uhlenbeck processes driven by a Lévy white noise, Potential Anal., Volume 32 (2010) no. 2, pp. 153-188
[3] Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992
[4] Continuity of
[5] A maximal inequality for stochastic convolution integrals on Hilbert spaces and space-time regularity of linear stochastic partial differential equations, Stochastics, Volume 21 (1987), pp. 345-458
[6] Stochastic Partial Differential Equations with Lévy Noise, Cambridge University Press, Cambridge, 2007
[7] E. Priola, J. Zabczyk, On linear evolution with cylindrical Lévy noise, in: G. Da Prato, L. Tubaro (Eds.), Stochastic Partial Differential Equations and Applications VIII, Proceedings of the Levico 2008 Conference
[8] E. Priola, J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, in press
- Well-posedness of stochastic 2D hydrodynamics type systems with multiplicative Lévy noises, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp779
- Stochastic integration with respect to canonical α-stable cylindrical Lévy processes, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp884
- Variational solutions of stochastic partial differential equations with cylindrical Lévy noise, Discrete Continuous Dynamical Systems - B, Volume 26 (2021) no. 6, p. 2879 | DOI:10.3934/dcdsb.2020209
- The stochastic Cauchy problem driven by a cylindrical Lévy process, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/19-ejp407
- Maximal inequalities for stochastic convolutions in 2-smooth Banach spaces and applications to stochastic evolution equations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 378 (2020) no. 2185, p. 20190622 | DOI:10.1098/rsta.2019.0622
- Path properties of the solution to the stochastic heat equation with Lévy noise, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 7 (2019) no. 1, p. 123 | DOI:10.1007/s40072-018-0124-y
- Stochastic Reaction-diffusion Equations Driven by Jump Processes, Potential Analysis, Volume 49 (2018) no. 1, p. 131 | DOI:10.1007/s11118-017-9651-9
- Generalized couplings and convergence of transition probabilities, Probability Theory and Related Fields, Volume 171 (2018) no. 1-2, p. 333 | DOI:10.1007/s00440-017-0779-8
- Maximal inequalities for stochastic convolutions driven by compensated Poisson random measures in Banach spaces, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 53 (2017) no. 2 | DOI:10.1214/16-aihp743
- Time Regularity of Generalized Ornstein–Uhlenbeck Processes with Lévy Noises in Hilbert Spaces, Journal of Theoretical Probability, Volume 29 (2016) no. 3, p. 843 | DOI:10.1007/s10959-015-0594-z
- Ornstein-Uhlenbeck Processes Driven by Cylindrical Lévy Processes, Potential Analysis, Volume 42 (2015) no. 4, p. 809 | DOI:10.1007/s11118-014-9458-x
- Infinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes, Probability Surveys, Volume 12 (2015) no. none | DOI:10.1214/14-ps249
- Linear Evolution Equations with Cylindrical Lévy Noise: Gradient Estimates and Exponential Ergodicity, Stochastic Analysis and Applications, Volume 33 (2015) no. 2, p. 306 | DOI:10.1080/07362994.2014.989330
- Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: An L2 approach, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 17 (2014) no. 01, p. 1450008 | DOI:10.1142/s0219025714500088
- Time regularity for stochastic Volterra equations by the dilation theorem, Journal of Mathematical Analysis and Applications, Volume 409 (2014) no. 2, p. 676 | DOI:10.1016/j.jmaa.2013.07.055
- Uniqueness in Law of the stochastic convolution process driven by Lévy noise, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2807
- Martingale Solution to Equations for Differential Type Fluids of Grade Two Driven by Random Force of Lévy Type, Potential Analysis, Volume 38 (2013) no. 4, p. 1291 | DOI:10.1007/s11118-012-9316-7
- Time regularity of solutions to linear equations with Lévy noise in infinite dimensions, Stochastic Processes and their Applications, Volume 123 (2013) no. 3, p. 719 | DOI:10.1016/j.spa.2012.10.012
- On a Burgers type nonlinear equation perturbed by a pure jump Lévy noise in Rd, Bulletin des Sciences Mathématiques, Volume 136 (2012) no. 5, p. 484 | DOI:10.1016/j.bulsci.2011.07.015
- Exponential ergodicity and regularity for equations with Lévy noise, Stochastic Processes and their Applications, Volume 122 (2012) no. 1, p. 106 | DOI:10.1016/j.spa.2011.10.003
- Lévy–Ornstein–Uhlenbeck transition semigroup as second quantized operator, Journal of Functional Analysis, Volume 260 (2011) no. 12, p. 3457 | DOI:10.1016/j.jfa.2011.03.002
- EXPONENTIAL MIXING FOR SOME SPDEs WITH LÉVY NOISE, Stochastics and Dynamics, Volume 11 (2011) no. 02n03, p. 521 | DOI:10.1142/s0219493711003425
Cité par 22 documents. Sources : Crossref
☆ Supported by the Polish Ministry of Science and Education project 1PO 3A 034 29 “Stochastic evolution equations with Lévy noise” and by EC FP6 Marie Curie ToK programme SPADE2.
Commentaires - Politique