Comptes Rendus
Partial Differential Equations/Numerical Analysis
On the determination of Dirichlet or transmission eigenvalues from far field data
Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 379-383.

We show that the Herglotz wave function with kernel the Tikhonov regularized solution of the far field equation becomes unbounded as the regularization parameter tends to zero iff the wavenumber k belongs to a discrete set of values. When the scatterer is such that the total field vanishes on the boundary, these values correspond to the square root of Dirichlet eigenvalues for −Δ. When the scatterer is a nonabsorbing inhomogeneous medium these values correspond to so-called transmission eigenvalues.

Nous montrons qu'une certaine norme de l'onde de Herglotz ayant pour noyau la régularisée de Tikhonov de la solution de l'équation de champs lointains tend vers ∞ lorsque le paramètre de régularisation tend vers 0, si le nombre d'onde k appartient à un ensemble discret de valeurs. Lorsque l'objet diffractant est tel que l'onde s'annule sur sa frontière, ces valeurs sont les racines carrées des valeurs propres de Dirichlet pour −Δ. Lorsque l'objet diffractant est un milieu pénétrable non absorbant, ces valeurs coincident avec les dites valeurs propres de transmission.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.02.003

Fioralba Cakoni 1; David Colton 1; Houssem Haddar 2

1 Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553, USA
2 INRIA Saclay Ile de France & École polytechnique (CMAP), route de Saclay, 91128 Palaiseau cedex, France
@article{CRMATH_2010__348_7-8_379_0,
     author = {Fioralba Cakoni and David Colton and Houssem Haddar},
     title = {On the determination of {Dirichlet} or transmission eigenvalues from far field data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {379--383},
     publisher = {Elsevier},
     volume = {348},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crma.2010.02.003},
     language = {en},
}
TY  - JOUR
AU  - Fioralba Cakoni
AU  - David Colton
AU  - Houssem Haddar
TI  - On the determination of Dirichlet or transmission eigenvalues from far field data
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 379
EP  - 383
VL  - 348
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2010.02.003
LA  - en
ID  - CRMATH_2010__348_7-8_379_0
ER  - 
%0 Journal Article
%A Fioralba Cakoni
%A David Colton
%A Houssem Haddar
%T On the determination of Dirichlet or transmission eigenvalues from far field data
%J Comptes Rendus. Mathématique
%D 2010
%P 379-383
%V 348
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2010.02.003
%G en
%F CRMATH_2010__348_7-8_379_0
Fioralba Cakoni; David Colton; Houssem Haddar. On the determination of Dirichlet or transmission eigenvalues from far field data. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 379-383. doi : 10.1016/j.crma.2010.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.02.003/

[1] T. Arens Why linear sampling method works, Inverse Problems, Volume 20 (2004), pp. 163-173

[2] F. Cakoni; M. Cayoren; D. Colton Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, Volume 24 (2008), p. 066016

[3] F. Cakoni; D. Colton Qualitative Methods in Inverse Scattering Theory, Springer, Berlin, 2006

[4] F. Cakoni, D. Colton, H. Haddar, The interior transmission problem for region with cavities, SIAM Jour. Math. Anal., | DOI

[5] F. Cakoni; H. Haddar On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, Volume 88 (2009), pp. 475-493

[6] D. Colton Partial Differential Equations: An Introduction, Dover, New York, 2004

[7] A. Kirsch Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory, Inverse Problems, Volume 15 (1999), pp. 413-429

[8] J. Lions; E. Magenese Non-homogeneous Boundary Value Problems and Applications, Springer-Verlag, NY, 1972

[9] L. Päivärinta; J. Sylvester Transmission eigenvalues, SIAM J. Math. Anal., Volume 40 (2008), pp. 738-753

[10] B.P. Rynne; B.D. Sleeman The interior transmission problem and inverse scattering from inhomogeneous media, SIAM J. Math. Anal., Volume 22 (1992), pp. 1755-1762

Cited by Sources:

The research of F.C. and D.C. was supported in part by the U.S. Air Force Office of Scientific Research under Grant FA-9550-08-1-0138. This research was in part supported by the associate team ISIP of INRIA-UDEL.

Comments - Policy