We show that the Herglotz wave function with kernel the Tikhonov regularized solution of the far field equation becomes unbounded as the regularization parameter tends to zero iff the wavenumber k belongs to a discrete set of values. When the scatterer is such that the total field vanishes on the boundary, these values correspond to the square root of Dirichlet eigenvalues for −Δ. When the scatterer is a nonabsorbing inhomogeneous medium these values correspond to so-called transmission eigenvalues.
Nous montrons qu'une certaine norme de l'onde de Herglotz ayant pour noyau la régularisée de Tikhonov de la solution de l'équation de champs lointains tend vers ∞ lorsque le paramètre de régularisation tend vers 0, si le nombre d'onde k appartient à un ensemble discret de valeurs. Lorsque l'objet diffractant est tel que l'onde s'annule sur sa frontière, ces valeurs sont les racines carrées des valeurs propres de Dirichlet pour −Δ. Lorsque l'objet diffractant est un milieu pénétrable non absorbant, ces valeurs coincident avec les dites valeurs propres de transmission.
Accepted:
Published online:
Fioralba Cakoni 1; David Colton 1; Houssem Haddar 2
@article{CRMATH_2010__348_7-8_379_0, author = {Fioralba Cakoni and David Colton and Houssem Haddar}, title = {On the determination of {Dirichlet} or transmission eigenvalues from far field data}, journal = {Comptes Rendus. Math\'ematique}, pages = {379--383}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2010.02.003}, language = {en}, }
TY - JOUR AU - Fioralba Cakoni AU - David Colton AU - Houssem Haddar TI - On the determination of Dirichlet or transmission eigenvalues from far field data JO - Comptes Rendus. Mathématique PY - 2010 SP - 379 EP - 383 VL - 348 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2010.02.003 LA - en ID - CRMATH_2010__348_7-8_379_0 ER -
Fioralba Cakoni; David Colton; Houssem Haddar. On the determination of Dirichlet or transmission eigenvalues from far field data. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 379-383. doi : 10.1016/j.crma.2010.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.02.003/
[1] Why linear sampling method works, Inverse Problems, Volume 20 (2004), pp. 163-173
[2] Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, Volume 24 (2008), p. 066016
[3] Qualitative Methods in Inverse Scattering Theory, Springer, Berlin, 2006
[4] F. Cakoni, D. Colton, H. Haddar, The interior transmission problem for region with cavities, SIAM Jour. Math. Anal., | DOI
[5] On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, Volume 88 (2009), pp. 475-493
[6] Partial Differential Equations: An Introduction, Dover, New York, 2004
[7] Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory, Inverse Problems, Volume 15 (1999), pp. 413-429
[8] Non-homogeneous Boundary Value Problems and Applications, Springer-Verlag, NY, 1972
[9] Transmission eigenvalues, SIAM J. Math. Anal., Volume 40 (2008), pp. 738-753
[10] The interior transmission problem and inverse scattering from inhomogeneous media, SIAM J. Math. Anal., Volume 22 (1992), pp. 1755-1762
Cited by Sources:
☆ The research of F.C. and D.C. was supported in part by the U.S. Air Force Office of Scientific Research under Grant FA-9550-08-1-0138. This research was in part supported by the associate team ISIP of INRIA-UDEL.
Comments - Policy