Comptes Rendus
Probability Theory/Mathematical Physics
The Ghirlanda–Guerra identities for mixed p-spin model
[Les identités de Ghirlanda–Guerra pour les mélanges de modèles à p-spin]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 189-192.

Nous montrons que sous les conditions connues pour impliquer la validité de la formule de Parisi, si l'Hamiltonien du modè le générique de Sherrington–Kirkpatrick Hamiltonien contient un « Hamiltonien de p-spin » alors les identités de Ghirlanda–Guerra pour la puissance p des recouvrements sont valides dans un sens fort (et pas seulement en moyenne sur les parametres).

We show that, under the conditions known to imply the validity of the Parisi formula, if the generic Sherrington–Kirkpatrick Hamiltonian contains a p-spin term then the Ghirlanda–Guerra identities for the pth power of the overlap hold in a strong sense without averaging. This implies strong version of the extended Ghirlanda–Guerra identities for mixed p-spin models than contain terms for all even p2 and p=1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.02.004

Dmitry Panchenko 1

1 Department of Mathematics, Texas A&M University, 77843 College Station, TX, USA
@article{CRMATH_2010__348_3-4_189_0,
     author = {Dmitry Panchenko},
     title = {The {Ghirlanda{\textendash}Guerra} identities for mixed \protect\emph{p}-spin model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {189--192},
     publisher = {Elsevier},
     volume = {348},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crma.2010.02.004},
     language = {en},
}
TY  - JOUR
AU  - Dmitry Panchenko
TI  - The Ghirlanda–Guerra identities for mixed p-spin model
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 189
EP  - 192
VL  - 348
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2010.02.004
LA  - en
ID  - CRMATH_2010__348_3-4_189_0
ER  - 
%0 Journal Article
%A Dmitry Panchenko
%T The Ghirlanda–Guerra identities for mixed p-spin model
%J Comptes Rendus. Mathématique
%D 2010
%P 189-192
%V 348
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2010.02.004
%G en
%F CRMATH_2010__348_3-4_189_0
Dmitry Panchenko. The Ghirlanda–Guerra identities for mixed p-spin model. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 189-192. doi : 10.1016/j.crma.2010.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.02.004/

[1] S. Chatterjee The Ghirlanda–Guerra identities without averaging, 2009 (preprint) | arXiv

[2] S. Ghirlanda; F. Guerra General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A, Volume 31 (1998) no. 46, pp. 9149-9155

[3] D. Panchenko On differentiability of the Parisi formula, Electron. Comm. Probab., Volume 13 (2008), pp. 241-247

[4] G. Parisi A sequence of approximate solutions to the S-K model for spin glasses, J. Phys. A, Volume 13 (1980), p. L-115

[5] M. Talagrand Parisi measures, J. Funct. Anal., Volume 231 (2006) no. 2, pp. 269-286

[6] M. Talagrand Parisi formula, Ann. of Math. (2), Volume 163 (2006) no. 1, pp. 221-263

[7] M. Talagrand, Construction of pure states in mean-field models for spin glasses, preprint (2008), Probab. Theory Related Fields, in press, http://www.springerlink.com/content/y507332m08275t67/?p=d35ca639b02943ecae07559b26ef2abf&pi=10

[8] M. Talagrand, Mean field models for spin glasses, manuscript

  • Erik Bates; Youngtak Sohn Parisi Formula for Balanced Potts Spin Glass, Communications in Mathematical Physics, Volume 405 (2024) no. 10 | DOI:10.1007/s00220-024-05100-9
  • Hong-Bin Chen On the self-overlap in vector spin glasses, Journal of Mathematical Physics, Volume 65 (2024) no. 3 | DOI:10.1063/5.0196632
  • Elena Agliari; Francesco Alemanno; Miriam Aquaro; Adriano Barra Ultrametric identities in glassy models of natural evolution, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 38, p. 385001 | DOI:10.1088/1751-8121/acf101
  • Jean Barbier; Dmitry Panchenko Strong Replica Symmetry in High-Dimensional Optimal Bayesian Inference, Communications in Mathematical Physics, Volume 393 (2022) no. 3, p. 1199 | DOI:10.1007/s00220-022-04387-w
  • Jean Barbier; Dmitry Panchenko; Manuel Sáenz Strong replica symmetry for high-dimensional disordered log-concave Gibbs measures, Information and Inference: A Journal of the IMA, Volume 11 (2022) no. 3, p. 1079 | DOI:10.1093/imaiai/iaab027
  • Sourav Chatterjee; Leila Sloman Average Gromov hyperbolicity and the Parisi ansatz, Advances in Mathematics, Volume 376 (2021), p. 107417 | DOI:10.1016/j.aim.2020.107417
  • Chigak Itoi Uniqueness of Ground State in the Edwards–Anderson Spin Glass Model, Journal of the Physical Society of Japan, Volume 90 (2021) no. 3, p. 033002 | DOI:10.7566/jpsj.90.033002
  • J. Roldan; R. Vila On the ultrametricity property in random field Ising models, Journal of Mathematical Physics, Volume 61 (2020) no. 10 | DOI:10.1063/5.0001936
  • Erik Bates; Sourav Chatterjee Localization in Gaussian disordered systems at low temperature, The Annals of Probability, Volume 48 (2020) no. 6 | DOI:10.1214/20-aop1436
  • Jean Barbier, 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2019), p. 644 | DOI:10.1109/camsap45676.2019.9022463
  • Antonio Auffinger; Aukosh Jagannath On Spin Distributions for Generic p-Spin Models, Journal of Statistical Physics, Volume 174 (2019) no. 2, p. 316 | DOI:10.1007/s10955-018-2188-5
  • C. Itoi Zero-Variance of Perturbation Hamiltonian Density in Perturbed Spin Systems, Journal of Statistical Physics, Volume 176 (2019) no. 3, p. 556 | DOI:10.1007/s10955-019-02311-6
  • C. Itoi Self-Averaging of Perturbation Hamiltonian Density in Perturbed Spin Systems, Journal of Statistical Physics, Volume 177 (2019) no. 6, p. 1063 | DOI:10.1007/s10955-019-02408-y
  • Antonio Auffinger; Aukosh Jagannath Thouless–Anderson–Palmer equations for generic p-spin glasses, The Annals of Probability, Volume 47 (2019) no. 4 | DOI:10.1214/18-aop1307
  • Gérard Ben Arous; Aukosh Jagannath Spectral Gap Estimates in Mean Field Spin Glasses, Communications in Mathematical Physics, Volume 361 (2018) no. 1, p. 1 | DOI:10.1007/s00220-018-3152-6
  • C. Itoi Absence of Replica Symmetry Breaking in the Transverse and Longitudinal Random Field Ising Model, Journal of Statistical Physics, Volume 170 (2018) no. 4, p. 684 | DOI:10.1007/s10955-017-1950-4
  • Dmitry Panchenko Free energy in the mixed p-spin models with vector spins, The Annals of Probability, Volume 46 (2018) no. 2 | DOI:10.1214/17-aop1194
  • Frédéric Ouimet Geometry of the Gibbs measure for the discrete 2D Gaussian free field with scale-dependent variance, Latin American Journal of Probability and Mathematical Statistics, Volume 14 (2017) no. 1, p. 851 | DOI:10.30757/alea.v14-38
  • Dmitry Panchenko Chaos in Temperature in Generic 2p-Spin Models, Communications in Mathematical Physics, Volume 346 (2016) no. 2, p. 703 | DOI:10.1007/s00220-016-2585-z
  • Antonio Auffinger; Wei‐Kuo Chen Universality of Chaos and Ultrametricity in Mixed p‐Spin Models, Communications on Pure and Applied Mathematics, Volume 69 (2016) no. 11, p. 2107 | DOI:10.1002/cpa.21617
  • C. Itoi General Properties of Overlap Operators in Disordered Quantum Spin Systems, Journal of Statistical Physics, Volume 163 (2016) no. 6, p. 1339 | DOI:10.1007/s10955-016-1527-7
  • Sourav Chatterjee Absence of Replica Symmetry Breaking in the Random Field Ising Model, Communications in Mathematical Physics, Volume 337 (2015) no. 1, p. 93 | DOI:10.1007/s00220-014-2269-5
  • Dmitry Panchenko Hierarchical exchangeability of pure states in mean field spin glass models, Probability Theory and Related Fields, Volume 161 (2015) no. 3-4, p. 619 | DOI:10.1007/s00440-014-0555-y
  • Louis-Pierre Arguin; Olivier Zindy Poisson–Dirichlet statistics for the extremes of a log-correlated Gaussian field, The Annals of Applied Probability, Volume 24 (2014) no. 4 | DOI:10.1214/13-aap952
  • Dmitry Panchenko The Parisi formula for mixed p-spin models, The Annals of Probability, Volume 42 (2014) no. 3 | DOI:10.1214/12-aop800
  • Dmitry Panchenko The Parisi ultrametricity conjecture, Annals of Mathematics, Volume 177 (2013) no. 1, p. 383 | DOI:10.4007/annals.2013.177.1.8
  • Pierluigi Contucci; Emanuele Mingione; Shannon Starr Factorization Properties in d-Dimensional Spin Glasses. Rigorous Results and Some Perspectives, Journal of Statistical Physics, Volume 151 (2013) no. 5, p. 809 | DOI:10.1007/s10955-013-0730-z
  • Louis-Pierre Arguin; Sourav Chatterjee Random overlap structures: properties and applications to spin glasses, Probability Theory and Related Fields, Volume 156 (2013) no. 1-2, p. 375 | DOI:10.1007/s00440-012-0431-6
  • Wei-Kuo Chen; Dmitry Panchenko An approach to chaos in some mixed p-spin models, Probability Theory and Related Fields, Volume 157 (2013) no. 1-2, p. 389 | DOI:10.1007/s00440-012-0460-1
  • Dmitry Panchenko Spin glass models from the point of view of spin distributions, The Annals of Probability, Volume 41 (2013) no. 3A | DOI:10.1214/11-aop696
  • Dmitry Panchenko The Free Energy and Gibbs Measure, The Sherrington-Kirkpatrick Model (2013), p. 1 | DOI:10.1007/978-1-4614-6289-7_1
  • Dmitry Panchenko Toward a Generalized Parisi Ansatz, The Sherrington-Kirkpatrick Model (2013), p. 117 | DOI:10.1007/978-1-4614-6289-7_4
  • Dmitry Panchenko The Ruelle Probability Cascades, The Sherrington-Kirkpatrick Model (2013), p. 33 | DOI:10.1007/978-1-4614-6289-7_2
  • Dmitry Panchenko The Parisi Formula, The Sherrington-Kirkpatrick Model (2013), p. 79 | DOI:10.1007/978-1-4614-6289-7_3
  • Dmitry Panchenko A Unified Stability Property in Spin Glasses, Communications in Mathematical Physics, Volume 313 (2012) no. 3, p. 781 | DOI:10.1007/s00220-012-1458-3
  • Dmitry Panchenko The Sherrington-Kirkpatrick Model: An Overview, Journal of Statistical Physics, Volume 149 (2012) no. 2, p. 362 | DOI:10.1007/s10955-012-0586-7
  • P. Contucci; C. Giardinà; C. Giberti Stability of the spin glass phase under perturbations, EPL (Europhysics Letters), Volume 96 (2011) no. 1, p. 17003 | DOI:10.1209/0295-5075/96/17003
  • Louis-Pierre Arguin; Michael Damron Short-Range Spin Glasses and Random Overlap Structures, Journal of Statistical Physics, Volume 143 (2011) no. 2, p. 226 | DOI:10.1007/s10955-011-0177-z

Cité par 38 documents. Sources : Crossref

Commentaires - Politique