In this Note we are concerned with backward stochastic differential equations with random default time. The equations are driven by Brownian motion as well as a mutually independent martingale appearing in a defaultable setting. We show that these equations have unique solutions and a comparison theorem for their solutions. As an application, we get a saddle-point strategy for the related zero-sum stochastic differential game problem.
Dans cette Note, nous considirons les équations différentielles stochastiques rétrogrades avec le temps aléatoire de défaut. Les équations sont dirigées par mouvement brownien ainsi qu'une martingale mutuellement indépendants apparaissant dans un cadre de defaut. Nous montrons que ces équations ont des solutions uniques et un théorème de comparaison pour leurs solutions. Comme une application, nous obtenons une stratégie de point-selle pour le jeu associé différentiel stochastique à somme nulle.
Accepted:
Published online:
Shige Peng 1; Xiaoming Xu 1
@article{CRMATH_2010__348_3-4_193_0, author = {Shige Peng and Xiaoming Xu}, title = {BSDEs with random default time and related zero-sum stochastic differential games}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--198}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.11.009}, language = {en}, }
TY - JOUR AU - Shige Peng AU - Xiaoming Xu TI - BSDEs with random default time and related zero-sum stochastic differential games JO - Comptes Rendus. Mathématique PY - 2010 SP - 193 EP - 198 VL - 348 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2009.11.009 LA - en ID - CRMATH_2010__348_3-4_193_0 ER -
Shige Peng; Xiaoming Xu. BSDEs with random default time and related zero-sum stochastic differential games. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 193-198. doi : 10.1016/j.crma.2009.11.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.009/
[1] Existence of optimal stochastic control laws, SIAM J. Control Optim., Volume 9 (1971) no. 3, pp. 446-472
[2] Hedging of defaultable claims, Paris–Princeton Lecture on Mathematical Finance 2003, Lecture Notes in Math., vol. 1847, Springer, 2004, pp. 1-132
[3] T.R. Bielecki, M. Jeanblanc, M. Rutkowski, Introduction to mathematics of credit risk modeling, in: Stochastic Models in Mathematical Finance, CIMPA–UNESCO–MOROCCO School, Marrakech, Morocco, April 9–20, 2007, pp. 1–78
[4] BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations, Stochastic Process. Appl., Volume 107 (2003), pp. 145-169
[5] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997) no. 1, pp. 1-71
[6] I will survive, Risk (June 2003), pp. 103-107
[7] Zero-sum stochastic differential games and backward equations, Systems Control Lett., Volume 24 (1995), pp. 259-263
[8] Counterparty risk and the pricing of defaultable securities, J. Finance, Volume 56 (2001), pp. 1765-1799
[9] A remark on default risk models, Adv. Math. Econ., Volume 1 (1999), pp. 69-82
[10] Random Times and Enlargements of Filtrations in a Brownian Setting, Lecture Notes in Math., vol. 1873, Springer, 2006
[11] Adapted solution of a backward stochastic differential equation, Systems Control Lett., Volume 14 (1990), pp. 55-61
[12] Backward stochastic differential equations and quasilinear parabolic partial differential equations, Lecture Notes in Control and Inform. Sci., vol. 176, Springer, Berlin, 1992, pp. 200-217
[13] A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation, Stochastics Stochastics Rep., Volume 38 (1992), pp. 119-134
[14] BSDEs with random default time and their applications to default risk, 12 October 2009 | arXiv
Cited by Sources:
Comments - Politique