Comptes Rendus
Statistics
A semiparametric test of independence in copula models for censored data
[Test d'indépendance semiparamétrique dans des modèles de copule pour les données censurées]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 449-453.

Nous proposons un test d'indépendance dans des modèles de copule dans le cadre des données censurées. Nous obtenons les lois asymptotiques, de l'estimateur et de la statistique de test proposés, lorsque le paramètre est un point frontière de son domaine.

We propose a semiparametric test of independence in copula models for bivariate survival censored data. We give the limit laws of the estimate of the parameter and the proposed test statistic under the null hypothesis of independence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.02.013

Salim Bouzebda 1 ; Amor Keziou 1, 2

1 LSTA-université Paris 6, 175, rue du Chevaleret, boîte 158, 75013 Paris, France
2 Laboratoire de mathématiques (FRE 3111) CNRS, université de Reims, Reims, France
@article{CRMATH_2010__348_7-8_449_0,
     author = {Salim Bouzebda and Amor Keziou},
     title = {A semiparametric test of independence in copula models for censored data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {449--453},
     publisher = {Elsevier},
     volume = {348},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crma.2010.02.013},
     language = {en},
}
TY  - JOUR
AU  - Salim Bouzebda
AU  - Amor Keziou
TI  - A semiparametric test of independence in copula models for censored data
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 449
EP  - 453
VL  - 348
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2010.02.013
LA  - en
ID  - CRMATH_2010__348_7-8_449_0
ER  - 
%0 Journal Article
%A Salim Bouzebda
%A Amor Keziou
%T A semiparametric test of independence in copula models for censored data
%J Comptes Rendus. Mathématique
%D 2010
%P 449-453
%V 348
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2010.02.013
%G en
%F CRMATH_2010__348_7-8_449_0
Salim Bouzebda; Amor Keziou. A semiparametric test of independence in copula models for censored data. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 449-453. doi : 10.1016/j.crma.2010.02.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.02.013/

[1] D.W.K. Andrews Estimation when a parameter is on a boundary, Econometrica, Volume 67 (1999) no. 6, pp. 1341-1383

[2] S. Bouzebda; A. Keziou A test of independence in some copula models, Math. Methods Statist., Volume 17 (2008) no. 2, pp. 123-137

[3] S. Bouzebda; A. Keziou A new test procedure of independence in copula models via χ2-divergence, Comm. Statist. Theory Methods, Volume 39 (2010) no. 1, pp. 1-20

[4] D. Chant On asymptotic tests of composite hypotheses in nonstandard conditions, Biometrika, Volume 61 (1974), pp. 291-298

[5] H. Chernoff On the distribution of the likelihood ratio, Ann. Math. Statist., Volume 25 (1954), pp. 573-578

[6] C. Genest; K. Ghoudi; L.-P. Rivest A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, Volume 82 (1995) no. 3, pp. 543-552

[7] H. Joe Parametric families of multivariate distributions with given margins, J. Multivariate Anal., Volume 46 (1993) no. 2, pp. 262-282

[8] H. Joe Multivariate Models and Dependence Concepts, Monogr. Statist. Appl. Probab., vol. 73, Chapman & Hall, London, 1997

[9] E.L. Kaplan; P. Meier Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc., Volume 53 (1958), pp. 457-481

[10] G. Kimeldorf; A. Sampson One-parameter families of bivariate distributions with fixed marginals, Comm. Statist., Volume 4 (1975), pp. 293-301

[11] G. Kimeldorf; A. Sampson Uniform representations of bivariate distributions, Comm. Statist., Volume 4 (1975) no. 7, pp. 617-627

[12] P.A.P. Moran Maximum-likelihood estimation in non-standard conditions, Proc. Cambridge Philos. Soc., Volume 70 (1971), pp. 441-450

[13] R.B. Nelsen An Introduction to Copulas, Lecture Notes in Statist., vol. 139, Springer-Verlag, New York, 1999

[14] D. Oakes Multivariate survival distributions, J. Nonparametr. Stat., Volume 3 (1994) no. 3–4, pp. 343-354

[15] S.G. Self; K.-Y. Liang Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, J. Amer. Statist. Assoc., Volume 82 (1987) no. 398, pp. 605-610

[16] J.H. Shih; T.A. Louis Inferences on the association parameter in copula models for bivariate survival data, Biometrics, Volume 51 (1995) no. 4, pp. 1384-1399

[17] H. Tsukahara Semiparametric estimation in copula models, Canad. J. Statist., Volume 33 (2005) no. 3, pp. 357-375

[18] W. Wang; A.A. Ding On assessing the association for bivariate current status data, Biometrika, Volume 87 (2000) no. 4, pp. 879-893

Cité par Sources :

Commentaires - Politique