Comptes Rendus
Partial Differential Equations/Differential Geometry
Q-curvature flow with indefinite nonlinearity
Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 403-406.

In this Note, we study Q-curvature flow on S4 with indefinite nonlinearity. Our result is that the prescribed Q-curvature problem on S4 has a solution provided the prescribed non-negative Q-curvature f has its positive part, which possesses non-degenerate critical points such that ΔS4f0 at the saddle points and an extra condition such as a nontrivial degree counting condition.

Dans cette Note on étudie le flot de Q-courbure sur S4 dans le cas d'une non-linéarité indéfinie. Le résultat montre que le problème de la Q-courbure imposée sur S4 a une solution à condition que la Q-courbure non négative imposée f ait une partie strictement positive et des points critiques non dégénérés tels que ΔS4f0 aux points selles et une condition supplémentaire du type condition non triviale sur le degré.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.02.014

Li Ma 1; B. Liu 1

1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
@article{CRMATH_2010__348_7-8_403_0,
     author = {Li Ma and B. Liu},
     title = {Q-curvature flow with indefinite nonlinearity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {403--406},
     publisher = {Elsevier},
     volume = {348},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crma.2010.02.014},
     language = {en},
}
TY  - JOUR
AU  - Li Ma
AU  - B. Liu
TI  - Q-curvature flow with indefinite nonlinearity
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 403
EP  - 406
VL  - 348
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2010.02.014
LA  - en
ID  - CRMATH_2010__348_7-8_403_0
ER  - 
%0 Journal Article
%A Li Ma
%A B. Liu
%T Q-curvature flow with indefinite nonlinearity
%J Comptes Rendus. Mathématique
%D 2010
%P 403-406
%V 348
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2010.02.014
%G en
%F CRMATH_2010__348_7-8_403_0
Li Ma; B. Liu. Q-curvature flow with indefinite nonlinearity. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 403-406. doi : 10.1016/j.crma.2010.02.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.02.014/

[1] Th. Aubin Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer, Berlin, 1998 MR1636569 (99i:58001)

[2] Paul Baird; Ali Fardoun; Rachid Regbaoui Q-curvature flow on 4-manifolds, Calc. Var., Volume 27 (2006) no. 1, pp. 75-104

[3] W. Beckner Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. of Math., Volume 138 (1993), pp. 213-242

[4] S. Brendle Global existence and convergence for a higher order flow in conformal geometry, Ann. of Math., Volume 158 (2003), pp. 323-343

[5] S.Y.A. Chang; P. Yang Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math., Volume 142 (1995), pp. 171-212

[6] M.C. Hong; L. Ma Curvature flow to Nirenberg problem, Arch. Math., Volume 242 (2010) (online)

[7] C.S. Lin A classification of solutions of conformally invariant fourth order equation in Rn, Comment. Math. Helv., Volume 73 (1998), pp. 206-231 (MR1611691, Zbl0933.35057)

[8] L. Ma Three remarks on mean field equations, Pacific J. Math., Volume 242 (2009), pp. 167-171

[9] A. Malchiodi; M. Struwe Q-curvature flow on S4, J. Differential Geom., Volume 73 (2006), pp. 1-44

[10] M. Struwe Curvature flows on surfaces, Ann. Sc. Norm. Sup. Pisa, Ser. V, Volume 1 (2002), pp. 247-274

[11] J. Wei; X. Xu On conformal deformation of metrics on Sn, J. Funct. Anal., Volume 157 (1998), pp. 292-325

Cited by Sources:

The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20090002110019.

Comments - Policy