We introduce a simplified model for the minimization of the elastic energy in thin shells. The thickness of the shell remains a parameter in this new model.
Nous développons un modèle simplifié pour le problème de minimisation de l'énergie élastique d'une coque mince. L'épaisseur de la coque reste un paramètre du modèle.
Accepted:
Published online:
Dominique Blanchard 1; Georges Griso 2
@article{CRMATH_2010__348_7-8_461_0, author = {Dominique Blanchard and Georges Griso}, title = {Justification of a simplified model for shells in nonlinear elasticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {461--465}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2010.02.015}, language = {en}, }
TY - JOUR AU - Dominique Blanchard AU - Georges Griso TI - Justification of a simplified model for shells in nonlinear elasticity JO - Comptes Rendus. Mathématique PY - 2010 SP - 461 EP - 465 VL - 348 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2010.02.015 LA - en ID - CRMATH_2010__348_7-8_461_0 ER -
Dominique Blanchard; Georges Griso. Justification of a simplified model for shells in nonlinear elasticity. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 461-465. doi : 10.1016/j.crma.2010.02.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.02.015/
[1] Decomposition of shell deformations – Asymptotic behavior of the Green–St Venant strain tensor, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1099-1103
[2] Mathematical Elasticity, vol. III, Theory of Shells, North-Holland, Amsterdam, 2000
[3] An introduction to shell theory (P.G. Ciarlet; T.T. Li, eds.), Differential Geometry: Theory and Applications, World Scientific, Singapore, 2008, pp. 94-184
[4] A nonlinear Korn inequality on a surface, J. Math. Pures Appl., Volume 85 (2006), pp. 2-16
[5] Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma convergence, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 697-702
[6] Décomposition des déplacements d'une poutre : simplification d'un problème d'élasticité, C. R. Mecanique, Volume 333 (2005), pp. 475-480
[7] Obtention d'équations de plaques par la méthode d'éclatement appliquée aux équations tridimensionnelles, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 361-366
Cited by Sources:
Comments - Policy