Comptes Rendus
Group Theory
On representation zeta functions of groups and a conjecture of Larsen–Lubotzky
Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 363-367.

We study zeta functions enumerating finite-dimensional irreducible complex linear representations of compact p-adic analytic and of arithmetic groups. Using methods from p-adic integration, we show that the zeta functions associated to certain p-adic analytic pro-p groups satisfy functional equations. We prove a conjecture of Larsen and Lubotzky regarding the abscissa of convergence of arithmetic groups of type A2 defined over number fields, assuming a conjecture of Serre on lattices in semisimple groups of rank greater than 1.

On étudie les fonctions zêta dénombrant les représentations linéaires complexes irréductibles de dimension finie de groupes compacts p-adiques analytiques et de groupes arithmétiques. En utilisant une méthode d'intégration p-adique, on démontre que celles de ces fonctions qui sont associées à certains pro-p-groupes p-adiques analytiques satisfont à des équations fonctionnelles. En admettant une conjecture de Serre sur les réseaux dans les groupes semi-simples de rang supérieur 1, on démontre une conjecture de Larsen et Lubotzky pour les groupes algébriques de type A2 définis sur des corps de nombres.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.02.019

Nir Avni 1; Benjamin Klopsch 2; Uri Onn 3; Christopher Voll 4

1 Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA
2 Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
3 Department of Mathematics, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
4 School of Mathematics, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
@article{CRMATH_2010__348_7-8_363_0,
     author = {Nir Avni and Benjamin Klopsch and Uri Onn and Christopher Voll},
     title = {On representation zeta functions of groups and a conjecture of {Larsen{\textendash}Lubotzky}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {363--367},
     publisher = {Elsevier},
     volume = {348},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crma.2010.02.019},
     language = {en},
}
TY  - JOUR
AU  - Nir Avni
AU  - Benjamin Klopsch
AU  - Uri Onn
AU  - Christopher Voll
TI  - On representation zeta functions of groups and a conjecture of Larsen–Lubotzky
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 363
EP  - 367
VL  - 348
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2010.02.019
LA  - en
ID  - CRMATH_2010__348_7-8_363_0
ER  - 
%0 Journal Article
%A Nir Avni
%A Benjamin Klopsch
%A Uri Onn
%A Christopher Voll
%T On representation zeta functions of groups and a conjecture of Larsen–Lubotzky
%J Comptes Rendus. Mathématique
%D 2010
%P 363-367
%V 348
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2010.02.019
%G en
%F CRMATH_2010__348_7-8_363_0
Nir Avni; Benjamin Klopsch; Uri Onn; Christopher Voll. On representation zeta functions of groups and a conjecture of Larsen–Lubotzky. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 363-367. doi : 10.1016/j.crma.2010.02.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.02.019/

[1] N. Avni Arithmetic groups have rational representation growth, 2008 | arXiv

[2] N. Avni, B. Klopsch, U. Onn, C. Voll, Representation zeta functions of compact p-adic analytic groups and arithmetic groups, preprint

[3] N. Avni, B. Klopsch, U. Onn, C. Voll, Representation zeta functions for SL3, preprint

[4] R.E. Howe Kirillov theory for compact p-adic groups, Pacific J. Math., Volume 73 (1977), pp. 365-381

[5] A. Jaikin-Zapirain Zeta functions of representations of compact p-adic analytic groups, J. Amer. Math. Soc., Volume 19 (2006), pp. 91-118

[6] M. Larsen; A. Lubotzky Representation growth of linear groups, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 351-390

[7] A. Lubotzky; B. Martin Polynomial representation growth and the congruence subgroup problem, Israel J. Math., Volume 144 (2004), pp. 293-316

[8] W. Veys; W.A. Zúñiga-Galindo Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 2205-2227

[9] C. Voll, Functional equations for zeta functions of groups and rings, Ann. of Math., in press

Cited by Sources:

Comments - Policy