[Les espaces de Wilson et l'algèbre homologique pour les modules cogèbriques]
Dans cet article, nous montrons que les espaces de Wilson peuvent être utilisés pour remplacer les espaces de lacets infinis associés au spectre de Brown–Peterson dans le calcul des CTor, les dérivées à gauche du produit tensoriel généralisé définies par Hunton et Turner.
In an earlier work, Wilson spaces were used to compute certain CTor Hopf algebras. In this Note we show how one can replace a resolution by infinite loop spaces associated to the Brown–Peterson spectrum with a resolution by Wilson spaces.
Accepté le :
Publié le :
Takuji Kashiwabara 1
@article{CRMATH_2010__348_9-10_491_0, author = {Takuji Kashiwabara}, title = {Wilson spaces and homological algebra for coalgebraic modules}, journal = {Comptes Rendus. Math\'ematique}, pages = {491--493}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.002}, language = {en}, }
Takuji Kashiwabara. Wilson spaces and homological algebra for coalgebraic modules. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 491-493. doi : 10.1016/j.crma.2010.03.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.002/
[1] Unstable operations in generalized cohomology, Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, pp. 687-828
[2] Unstable splittings related to Brown–Peterson cohomology, Bellaterra, 1998 (Progr. Math.), Volume vol. 196, Birkhäuser, Basel (2001), pp. 35-45
[3] A spectrum whose cohomology is the algebra of reduced p-th powers, Topology, Volume 5 (1966), pp. 149-154
[4] Hopf rings, Dieudonné modules and (J.-P. Meyer; J. Morava; W.S. Wilson, eds.), Homotopy Invariant Algebraic Structures: A Conference in Honor of J. Michael Boardman, Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 115-174
[5] On the structure of spaces representing a Landweber exact cohomology theory, Topology, Volume 34 (1995), pp. 29-36
[6] Coalgebraic algebra, J. Pure Appl. Algebra, Volume 129 (1998), pp. 297-313
[7] The homology of spaces representing exact pairs of homotopy functors, Topology, Volume 38 (1999), pp. 621-623
[8] BP-operations and Morava's extraordinary K-theories, Math. Z., Volume 144 (1975), pp. 55-75
[9] Homological algebra for coalgebraic modules and mod p K-theory of infinite loop spaces, K-Theory, Volume 21 (2000), pp. 387-417
[10] The Morava K-theory and Brown–Peterson cohomology of spaces related to BP, J. Math. Kyoto Univ., Volume 41 (2001) no. 1, pp. 43-95
[11] Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963
[12] Wilson spaces and stable splittings of , Glasgow Math. J., Volume 36 (1994) no. 3, pp. 287-290
[13] The Ω-spectrum for Brown–Peterson cohomology, part I, Comment. Math. Helv., Volume 4 (1973), pp. 45-55
[14] The Ω-spectrum for Brown–Peterson cohomology, part II, Amer. J. Math., Volume 97 (1975), pp. 102-123
Cité par Sources :
Commentaires - Politique