[Séries universelles de Taylor pour les domaines non-simplement connexes]
Il est connu que, pour un sous-domaine propre simplement connexe Ω du plan complexe et un point quelconque ζ de Ω, il y a des fonctions holomorphes sur Ω qui possèdent des séries de Taylor « universelles » autour de ζ ; c'est-à-dire tout polynôme peut être approximé, sur tout compact de ayant un complémentaire connexe, par les sommes partielles de la série de Taylor. Cette note montre que ce résultat n'est plus vrai en général pour les domaines non-simplement connexes Ω, même lorsque est compact. Cela répond à une question de Melas et réfute une conjecture de Müller, Vlachou et Yavrian.
It is known that, for any simply connected proper subdomain Ω of the complex plane and any point ζ in Ω, there are holomorphic functions on Ω that have “universal” Taylor series expansions about ζ; that is, partial sums of the Taylor series approximate arbitrary polynomials on arbitrary compacta in that have connected complement. This note shows that this phenomenon can break down for non-simply connected domains Ω, even when is compact. This answers a question of Melas and disproves a conjecture of Müller, Vlachou and Yavrian.
Accepté le :
Publié le :
Stephen J. Gardiner 1 ; Nikolaos Tsirivas 1
@article{CRMATH_2010__348_9-10_521_0, author = {Stephen J. Gardiner and Nikolaos Tsirivas}, title = {Universal {Taylor} series for non-simply connected domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {521--524}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.003}, language = {en}, }
Stephen J. Gardiner; Nikolaos Tsirivas. Universal Taylor series for non-simply connected domains. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 521-524. doi : 10.1016/j.crma.2010.03.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.003/
[1] Classical Potential Theory, Springer, London, 2001
[2] Universal Taylor series on doubly connected domains, Results Math., Volume 53 (2009), pp. 9-18
[3] Universal Taylor series on general doubly connected domains, Bull. London Math. Soc., Volume 37 (2005), pp. 878-884
[4] Approximation by overconvergence of power series, J. Math. Anal. Appl., Volume 36 (1971), pp. 693-696
[5] Some remarks on universal functions and Taylor series, Math. Proc. Camb. Philos. Soc., Volume 128 (2000), pp. 157-175
[6] Universal Taylor series on doubly connected domains in respect to every center, J. Approx. Theory, Volume 134 (2005), pp. 1-10
[7] Universal Taylor series on non-simply connected domains, Analysis, Volume 26 (2006), pp. 347-363
[8] Overconvergent power series and conformal maps, J. Math. Anal. Appl., Volume 198 (1996), pp. 490-505
[9] On the existence of O-universal functions, Complex Var. Theory Appl., Volume 41 (2000), pp. 81-90
[10] Analytic Function Theory, vol. II, Ginn, Boston, 1962
[11] Baire's category theorem and trigonometric series, J. Anal. Math., Volume 80 (2000), pp. 143-182
[12] Universal approximation properties of overconvergent power series on open sets, Analysis, Volume 6 (1986), pp. 191-207
[13] Universal functions on nonsimply connected domains, Ann. Inst. Fourier (Grenoble), Volume 51 (2001), pp. 1539-1551
[14] Universality of Taylor series as a generic property of holomorphic functions, Adv. Math., Volume 157 (2001), pp. 138-176
[15] Universal overconvergence and Ostrowski-gaps, Bull. London Math. Soc., Volume 38 (2006), pp. 597-606
[16] Small domains of overconvergence of power series, J. Math. Anal. Appl., Volume 172 (1993), pp. 500-507
[17] Universal Taylor series, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 1293-1306
[18] An extension of the notion of universal Taylor series, Computational Methods and Function Theory 1997 (Nicosia), Ser. Approx. Decompos., vol. 11, World Sci. Publ., River Edge, NJ, 1999, pp. 421-430
[19] Universal Taylor series on arbitrary planar domains, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 7–8, pp. 363-367
[20] Untersuchungen über Lücken und Singularitäten von Potenzreihen. II, Ann. of Math. (2), Volume 34 (1933), pp. 731-777
[21] Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995
[22] N. Tsirivas, Universal Faber and Taylor series on an unbounded domain of infinite connectivity, Complex Var. Theory Appl., in press
[23] Universal Faber series with Hadamard–Ostrowski gaps, Comput. Methods Funct. Theory, Volume 10 (2010), pp. 155-165
[24] A universal Taylor series in the doubly connected domain , Complex Var. Theory Appl., Volume 47 (2002), pp. 123-129
[25] Universal Taylor series on a non-simply connected domain and Hadamard–Ostrowski gaps, Complex and Harmonic Analysis, DEStech Publ., Inc., Lancaster, PA, 2007, pp. 221-229
Cité par Sources :
☆ This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149, and is also part of the programme of the ESF Network “Harmonic and Complex Analysis and Applications” (HCAA).
Commentaires - Politique