[Séries universelles de Taylor pour les domaines non-simplement connexes]
Il est connu que, pour un sous-domaine propre simplement connexe Ω du plan complexe et un point quelconque ζ de Ω, il y a des fonctions holomorphes sur Ω qui possèdent des séries de Taylor « universelles » autour de ζ ; c'est-à-dire tout polynôme peut être approximé, sur tout compact de
It is known that, for any simply connected proper subdomain Ω of the complex plane and any point ζ in Ω, there are holomorphic functions on Ω that have “universal” Taylor series expansions about ζ; that is, partial sums of the Taylor series approximate arbitrary polynomials on arbitrary compacta in
Accepté le :
Publié le :
Stephen J. Gardiner 1 ; Nikolaos Tsirivas 1
@article{CRMATH_2010__348_9-10_521_0, author = {Stephen J. Gardiner and Nikolaos Tsirivas}, title = {Universal {Taylor} series for non-simply connected domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {521--524}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.003}, language = {en}, }
Stephen J. Gardiner; Nikolaos Tsirivas. Universal Taylor series for non-simply connected domains. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 521-524. doi : 10.1016/j.crma.2010.03.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.003/
[1] Classical Potential Theory, Springer, London, 2001
[2] Universal Taylor series on doubly connected domains, Results Math., Volume 53 (2009), pp. 9-18
[3] Universal Taylor series on general doubly connected domains, Bull. London Math. Soc., Volume 37 (2005), pp. 878-884
[4] Approximation by overconvergence of power series, J. Math. Anal. Appl., Volume 36 (1971), pp. 693-696
[5] Some remarks on universal functions and Taylor series, Math. Proc. Camb. Philos. Soc., Volume 128 (2000), pp. 157-175
[6] Universal Taylor series on doubly connected domains in respect to every center, J. Approx. Theory, Volume 134 (2005), pp. 1-10
[7] Universal Taylor series on non-simply connected domains, Analysis, Volume 26 (2006), pp. 347-363
[8] Overconvergent power series and conformal maps, J. Math. Anal. Appl., Volume 198 (1996), pp. 490-505
[9] On the existence of O-universal functions, Complex Var. Theory Appl., Volume 41 (2000), pp. 81-90
[10] Analytic Function Theory, vol. II, Ginn, Boston, 1962
[11] Baire's category theorem and trigonometric series, J. Anal. Math., Volume 80 (2000), pp. 143-182
[12] Universal approximation properties of overconvergent power series on open sets, Analysis, Volume 6 (1986), pp. 191-207
[13] Universal functions on nonsimply connected domains, Ann. Inst. Fourier (Grenoble), Volume 51 (2001), pp. 1539-1551
[14] Universality of Taylor series as a generic property of holomorphic functions, Adv. Math., Volume 157 (2001), pp. 138-176
[15] Universal overconvergence and Ostrowski-gaps, Bull. London Math. Soc., Volume 38 (2006), pp. 597-606
[16] Small domains of overconvergence of power series, J. Math. Anal. Appl., Volume 172 (1993), pp. 500-507
[17] Universal Taylor series, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 1293-1306
[18] An extension of the notion of universal Taylor series, Computational Methods and Function Theory 1997 (Nicosia), Ser. Approx. Decompos., vol. 11, World Sci. Publ., River Edge, NJ, 1999, pp. 421-430
[19] Universal Taylor series on arbitrary planar domains, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 7–8, pp. 363-367
[20] Untersuchungen über Lücken und Singularitäten von Potenzreihen. II, Ann. of Math. (2), Volume 34 (1933), pp. 731-777
[21] Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995
[22] N. Tsirivas, Universal Faber and Taylor series on an unbounded domain of infinite connectivity, Complex Var. Theory Appl., in press
[23] Universal Faber series with Hadamard–Ostrowski gaps, Comput. Methods Funct. Theory, Volume 10 (2010), pp. 155-165
[24] A universal Taylor series in the doubly connected domain
[25] Universal Taylor series on a non-simply connected domain and Hadamard–Ostrowski gaps, Complex and Harmonic Analysis, DEStech Publ., Inc., Lancaster, PA, 2007, pp. 221-229
- Universal Taylor series on specific compact sets, Bulletin of the Belgian Mathematical Society - Simon Stevin, Volume 30 (2023) no. 3, pp. 297-316 | DOI:10.36045/j.bbms.221026 | Zbl:1530.30036
- Overconvergence of polynomial expansions of harmonic functions, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 5, pp. 785-795 | DOI:10.1080/17476933.2019.1627526 | Zbl:1439.31004
- Universal Taylor series without Baire and the influence of J.-P. Kahane, Analysis Mathematica, Volume 44 (2018) no. 2, pp. 237-249 | DOI:10.1007/s10476-018-0208-y | Zbl:1413.30143
- Taylor series, universality and potential theory, New trends in approximation theory. In memory of André Boivin. Proceedings of the conference, Toronto, Canada, July 25–29, 2016, Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer, 2018, pp. 247-264 | DOI:10.1007/978-1-4939-7543-3_14 | Zbl:1432.30045
- Disjoint universality for families of Taylor-type operators, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, pp. 1318-1330 | DOI:10.1016/j.jmaa.2016.11.057 | Zbl:1375.30094
- Smooth universal Taylor series on doubly connected domains, Complex Variables and Elliptic Equations, Volume 61 (2016) no. 3, pp. 374-387 | DOI:10.1080/17476933.2015.1085517 | Zbl:1342.30052
- Boundary behaviour of universal Taylor series on multiply connected domains, Constructive Approximation, Volume 40 (2014) no. 2, pp. 259-279 | DOI:10.1007/s00365-014-9237-3 | Zbl:1316.30052
- Doubly universal Taylor series, Journal of Approximation Theory, Volume 180 (2014), pp. 21-31 | DOI:10.1016/j.jat.2013.12.006 | Zbl:1290.41009
- Determination of a universal series, Computational Methods and Function Theory, Volume 12 (2012) no. 1, pp. 173-199 | DOI:10.1007/bf03321821 | Zbl:1262.30072
- Existence of universal Taylor series for nonsimply connected domains, Constructive Approximation, Volume 35 (2012) no. 2, pp. 245-257 | DOI:10.1007/s00365-011-9133-z | Zbl:1266.30002
- Interpolation by universal, hypercyclic functions, Journal of Approximation Theory, Volume 164 (2012) no. 5, pp. 625-636 | DOI:10.1016/j.jat.2012.01.006 | Zbl:1246.41001
- Universality properties of Taylor series inside the domain of holomorphy, Journal of Mathematical Analysis and Applications, Volume 383 (2011) no. 1, pp. 234-238 | DOI:10.1016/j.jmaa.2011.05.020 | Zbl:1234.30042
Cité par 12 documents. Sources : zbMATH
☆ This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149, and is also part of the programme of the ESF Network “Harmonic and Complex Analysis and Applications” (HCAA).
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier