Comptes Rendus
Partial Differential Equations/Mathematical Problems in Mechanics
Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data
[Existence locale et unicité de solutions de l'équation d'Euler hydrostatique dans un ouvert borné avec des données analytiques]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 639-645.

On étudie le caractère bien posé dans des espaces de fonctions analytiques de l'équation d'Euler hydrostatique pour un fluide incompressible (équations primitives non-visqueuses) sur des domaines à bords, avec une nouvelle condition de bord.

We address the question of well-posedness in spaces of analytic functions for the hydrostatic incompressible Euler equations (inviscid primitive equations) on domains with boundary, with a novel side-boundary condition.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.03.023

Igor Kukavica 1 ; Roger Temam 2 ; Vlad Vicol 1 ; Mohammed Ziane 1

1 Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA
2 Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN 47405-5701, USA
@article{CRMATH_2010__348_11-12_639_0,
     author = {Igor Kukavica and Roger Temam and Vlad Vicol and Mohammed Ziane},
     title = {Existence and uniqueness of solutions for the hydrostatic {Euler} equations on a bounded domain with analytic data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {639--645},
     publisher = {Elsevier},
     volume = {348},
     number = {11-12},
     year = {2010},
     doi = {10.1016/j.crma.2010.03.023},
     language = {en},
}
TY  - JOUR
AU  - Igor Kukavica
AU  - Roger Temam
AU  - Vlad Vicol
AU  - Mohammed Ziane
TI  - Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 639
EP  - 645
VL  - 348
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2010.03.023
LA  - en
ID  - CRMATH_2010__348_11-12_639_0
ER  - 
%0 Journal Article
%A Igor Kukavica
%A Roger Temam
%A Vlad Vicol
%A Mohammed Ziane
%T Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data
%J Comptes Rendus. Mathématique
%D 2010
%P 639-645
%V 348
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2010.03.023
%G en
%F CRMATH_2010__348_11-12_639_0
Igor Kukavica; Roger Temam; Vlad Vicol; Mohammed Ziane. Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 639-645. doi : 10.1016/j.crma.2010.03.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.023/

[1] C. Bardos; S. Benachour Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de Rn, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), Volume 4 (1977), pp. 647-687

[2] C. Bardos; S. Benachour; M. Zerner Analyticité des solutions périodiques de l'équation d'Euler en deux dimensions, C. R. Acad. Sci. Paris Sér. A–B, Volume 282 (1976) no. 17, p. A995-A998 (Aiii)

[3] Y. Brenier Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, Volume 12 (1999), pp. 495-512

[4] E. Grenier On the derivation of homogeneous hydrostatic equations, M2AN Math. Model. Numer. Anal., Volume 33 (1999) no. 5, pp. 965-970

[5] I. Kukavica; V. Vicol On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 669-677

[6] I. Kukavica, V. Vicol, The domain of analyticity of solutions to the three-dimensional Euler equations in a half space, Discrete Contin. Dyn. Syst. Ser. A, in press

[7] I. Kukavica, R. Temam, V. Vicol, M. Ziane, Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, preprint

[8] P.-L. Lions Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, Oxford University Press, New York, 1996

[9] J.-L. Lions; R. Temam; S. Wang New formulations of the primitive equations of atmosphere and applications, Nonlinearity, Volume 5 (1992) no. 2, pp. 237-288

[10] C.D. Levermore; M. Oliver Analyticity of solutions for a generalized Euler equation, J. Differential Equations, Volume 133 (1997) no. 2, pp. 321-339

[11] M.C. Lombardo; M. Cannone; M. Sammartino Well-posedness of the boundary layer equations, SIAM J. Math. Anal., Volume 35 (2003) no. 4, pp. 987-1004

[12] J. Pedlosky Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987

[13] M. Renardy Ill-posedness of the hydrostatic Euler and Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 194 (2009), pp. 877-886

[14] A. Rousseau; R. Temam; J. Tribbia Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity, Discrete Contin. Dyn. Syst. Ser. A, Volume 13 (2005) no. 5, pp. 1257-1276

[15] A. Rousseau; R. Temam; J. Tribbia The 3D primitive equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl., Volume 89 (2008), pp. 297-319

[16] J. Oliger; A. Sundström Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math., Volume 35 (1978) no. 3, pp. 419-446

[17] M. Sammartino; R.E. Caflisch Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space, I. Existence for Euler and Prandtl equations, Comm. Math. Phys., Volume 192 (1998), pp. 433-461

[18] R. Temam On the Euler equations of incompressible perfect fluids, J. Funct. Anal., Volume 20 (1975) no. 1, pp. 32-43

[19] R. Temam; M. Ziane Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, vol. III, North-Holland, Amsterdam, 2004, pp. 535-657

Cité par Sources :

Commentaires - Politique