Comptes Rendus
Partial Differential Equations/Differential Geometry
On the prescribed Q-curvature problem on Sn
Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 635-638.

In this Note we prescribe a fourth order curvature – the Q-curvature on the standard n-sphere, n5. Under the “flatness condition” of order β, n4β<n near each critical point of the prescribed Q-curvature function, we prove new existence result through an Euler–Hopf type formula. Our argument gives a lower bound on the number of conformal metrics having the same Q-curvature.

Dans cette Note nous prescrivons une courbure du quatrième order-la Q-courbure sur la sphère standard de dimension n5. Sous une « condition de platitude » d'ordre β[n4,n[ au voisinage de chaque point critique de la fonction Q-courbure prescrite, nous prouvons un nouveau résultat d'existence grâce à une formule de type Euler–Hopf. Notre argument donne une minoration du nombre des métriques ayant la même Q-courbure.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.03.018

Hichem Chtioui 1; Afef Rigane 1

1 Département de Mathématiques, Faculté des Sciences de Sfax, Route Soukra, Sfax, Tunisia
@article{CRMATH_2010__348_11-12_635_0,
     author = {Hichem Chtioui and Afef Rigane},
     title = {On the prescribed {\protect\emph{Q}-curvature} problem on $ {S}^{n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {635--638},
     publisher = {Elsevier},
     volume = {348},
     number = {11-12},
     year = {2010},
     doi = {10.1016/j.crma.2010.03.018},
     language = {en},
}
TY  - JOUR
AU  - Hichem Chtioui
AU  - Afef Rigane
TI  - On the prescribed Q-curvature problem on $ {S}^{n}$
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 635
EP  - 638
VL  - 348
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2010.03.018
LA  - en
ID  - CRMATH_2010__348_11-12_635_0
ER  - 
%0 Journal Article
%A Hichem Chtioui
%A Afef Rigane
%T On the prescribed Q-curvature problem on $ {S}^{n}$
%J Comptes Rendus. Mathématique
%D 2010
%P 635-638
%V 348
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2010.03.018
%G en
%F CRMATH_2010__348_11-12_635_0
Hichem Chtioui; Afef Rigane. On the prescribed Q-curvature problem on $ {S}^{n}$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 635-638. doi : 10.1016/j.crma.2010.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.018/

[1] W. Abdelhedi; H. Chtioui On the prescribed Paneitz curvature problem on the standard spheres, Adv. Nonlinear Stud., Volume 6 (2006), pp. 511-528

[2] A. Bahri Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Sci. Tech., Harlow, 1989

[3] A. Bahri; J.M. Coron The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., Volume 95 (1991), pp. 106-172

[4] M. Ben Ayed; Y. Chen; H. Chtioui; M. Hammami On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., Volume 84 (1996), pp. 633-677

[5] T.P. Branson Differential operators canonically associated to a conformal structure, Math. Scand., Volume 57 (1985)

[6] T.P. Branson; S.A. Chang; P.C. Yang Estimates and extremal problems for the log-determinant on 4-manifolds, Comm. Math. Phys., Volume 149 (1992), pp. 241-262

[7] S.A. Chang, On Paneitz operator-a fourth order differential operator in conformal geometry, survey article, in: Proceedings for the 70th birthday of A.P. Calderon, in press

[8] S.A. Chang; P.C. Yang On a fourth order curvature invariant (T. Branson, ed.), Spectral Problems in Geometry and Arithmetic, Contemp. Math., vol. 237, AMS, 1999, pp. 9-28

[9] H. Chtioui, A. Rigane, On the prescribed Q-curvature problem on Sn, in preparation

[10] Z. Djadli; E. Hebey; M. Ledoux Paneitz type operators and applications, Duke Math. J., Volume 104 (2000) no. 1, pp. 129-169

[11] Z. Djadli; A. Malchiodi; M. Ould Ahmedou Prescribed fourth order conformal invariant on the standard sphere, part I: a perturbative result, Commun. Contemp. Math., Volume 4 (2002), pp. 375-408

[12] Z. Djadli; A. Malchiodi; M. Ould Ahmedou Prescribed fourth order conformal invariant on the standard sphere, part II: blow up analysis and applications, Ann. Sc. Norm. Super. Pisa, Volume 5 (2002), pp. 387-434

[13] V. Felli Existence of conformal metrics on Sn with prescribed fourth order invariant, Adv. Differential Equations, Volume 7 (2002), pp. 47-76

[14] Y.Y. Li Prescribing scalar curvature on Sn and related topics, Part I, J. Differential Equations, Volume 120 (1995), pp. 319-410

[15] Y.Y. Li Prescribing scalar curvature on Sn and related topics, Part II: Existence and compactness, Comm. Pure Appl. Math., Volume 49 (1996), pp. 437-477

[16] C.S. Lin A classification of solutions of a conformally invariant fourth order equation in Rn, Comment. Math. Helv., Volume 73 (1998), pp. 206-231

[17] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint, 1983

Cited by Sources:

Comments - Policy