In this Note we prescribe a fourth order curvature – the Q-curvature on the standard n-sphere, . Under the “flatness condition” of order β, near each critical point of the prescribed Q-curvature function, we prove new existence result through an Euler–Hopf type formula. Our argument gives a lower bound on the number of conformal metrics having the same Q-curvature.
Dans cette Note nous prescrivons une courbure du quatrième order-la Q-courbure sur la sphère standard de dimension . Sous une « condition de platitude » d'ordre au voisinage de chaque point critique de la fonction Q-courbure prescrite, nous prouvons un nouveau résultat d'existence grâce à une formule de type Euler–Hopf. Notre argument donne une minoration du nombre des métriques ayant la même Q-courbure.
Accepted:
Published online:
Hichem Chtioui 1; Afef Rigane 1
@article{CRMATH_2010__348_11-12_635_0, author = {Hichem Chtioui and Afef Rigane}, title = {On the prescribed {\protect\emph{Q}-curvature} problem on $ {S}^{n}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {635--638}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.03.018}, language = {en}, }
Hichem Chtioui; Afef Rigane. On the prescribed Q-curvature problem on $ {S}^{n}$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 635-638. doi : 10.1016/j.crma.2010.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.018/
[1] On the prescribed Paneitz curvature problem on the standard spheres, Adv. Nonlinear Stud., Volume 6 (2006), pp. 511-528
[2] Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Sci. Tech., Harlow, 1989
[3] The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., Volume 95 (1991), pp. 106-172
[4] On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., Volume 84 (1996), pp. 633-677
[5] Differential operators canonically associated to a conformal structure, Math. Scand., Volume 57 (1985)
[6] Estimates and extremal problems for the log-determinant on 4-manifolds, Comm. Math. Phys., Volume 149 (1992), pp. 241-262
[7] S.A. Chang, On Paneitz operator-a fourth order differential operator in conformal geometry, survey article, in: Proceedings for the 70th birthday of A.P. Calderon, in press
[8] On a fourth order curvature invariant (T. Branson, ed.), Spectral Problems in Geometry and Arithmetic, Contemp. Math., vol. 237, AMS, 1999, pp. 9-28
[9] H. Chtioui, A. Rigane, On the prescribed Q-curvature problem on , in preparation
[10] Paneitz type operators and applications, Duke Math. J., Volume 104 (2000) no. 1, pp. 129-169
[11] Prescribed fourth order conformal invariant on the standard sphere, part I: a perturbative result, Commun. Contemp. Math., Volume 4 (2002), pp. 375-408
[12] Prescribed fourth order conformal invariant on the standard sphere, part II: blow up analysis and applications, Ann. Sc. Norm. Super. Pisa, Volume 5 (2002), pp. 387-434
[13] Existence of conformal metrics on with prescribed fourth order invariant, Adv. Differential Equations, Volume 7 (2002), pp. 47-76
[14] Prescribing scalar curvature on and related topics, Part I, J. Differential Equations, Volume 120 (1995), pp. 319-410
[15] Prescribing scalar curvature on and related topics, Part II: Existence and compactness, Comm. Pure Appl. Math., Volume 49 (1996), pp. 437-477
[16] A classification of solutions of a conformally invariant fourth order equation in , Comment. Math. Helv., Volume 73 (1998), pp. 206-231
[17] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint, 1983
Cited by Sources:
Comments - Policy