[La géométrie de Lie des fronts plats dans l'éspace hyperbolique]
Nous proposons un point de vue de Lie géometrie sur les fronts plats dans l'éspace hyperbolique comme des surfaces Ω spéciales. Nous discutons ensuite la déformation Lie géometrique des fronts plats.
We propose a Lie geometric point of view on flat fronts in hyperbolic space as special Ω-surfaces and discuss the Lie geometric deformation of flat fronts.
Accepté le :
Publié le :
Francis E. Burstall 1 ; Udo Hertrich-Jeromin 1 ; Wayne Rossman 2
@article{CRMATH_2010__348_11-12_661_0, author = {Francis E. Burstall and Udo Hertrich-Jeromin and Wayne Rossman}, title = {Lie geometry of flat fronts in hyperbolic space}, journal = {Comptes Rendus. Math\'ematique}, pages = {661--664}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.018}, language = {en}, }
TY - JOUR AU - Francis E. Burstall AU - Udo Hertrich-Jeromin AU - Wayne Rossman TI - Lie geometry of flat fronts in hyperbolic space JO - Comptes Rendus. Mathématique PY - 2010 SP - 661 EP - 664 VL - 348 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2010.04.018 LA - en ID - CRMATH_2010__348_11-12_661_0 ER -
Francis E. Burstall; Udo Hertrich-Jeromin; Wayne Rossman. Lie geometry of flat fronts in hyperbolic space. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 661-664. doi : 10.1016/j.crma.2010.04.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.018/
[1] Vorlesungen über Differentialgeometrie III, Grundlehren, vol. XXIX, Springer, Berlin, 1929
[2] Sur les surfaces R et les surfaces Ω, Comptes Rendus, Volume 153 (1911), pp. 590-593 (705–707)
[3] Sur les surfaces Ω, Comptes Rendus, Volume 153 (1911), pp. 927-929
[4] Flat surfaces in the hyperbolic 3-space, Math. Ann., Volume 316 (2000), pp. 419-435
[5] Introduction to Möbius Differential Geometry, Cambridge Univ. Press, Cambridge, 2003
[6] Discrete flat surfaces and linear Weingarten surfaces in hyperbolic 3-space, 2009 (Eprint) | arXiv
[7] Singularities of flat fronts in hyperbolic space, Pacific J. Math., Volume 221 (2005), pp. 303-352
[8] Flat fronts in hyperbolic space and their caustics, J. Math. Soc. Japan, Volume 59 (2007), pp. 265-299
[9] Deformation and applicability of surfaces in Lie sphere geometry, Tôhoku Math. J., Volume 58 (2006), pp. 161-187
- Channel linear Weingarten surfaces in space forms, Beiträge zur Algebra und Geometrie, Volume 64 (2023) no. 4, pp. 969-1009 | DOI:10.1007/s13366-022-00664-w | Zbl:1527.53003
- Constrained elastic curves and surfaces with spherical curvature lines, Indiana University Mathematics Journal, Volume 72 (2023) no. 5, pp. 2059-2099 | DOI:10.1512/iumj.2023.72.9487 | Zbl:1544.53013
- Discrete cyclic systems and circle congruences, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 201 (2022) no. 6, pp. 2797-2824 | DOI:10.1007/s10231-022-01219-5 | Zbl:1504.53027
- Notes on flat fronts in hyperbolic space, Journal of Geometry, Volume 113 (2022) no. 1, p. 13 (Id/No 20) | DOI:10.1007/s00022-022-00628-4 | Zbl:1491.53070
- Polynomial conserved quantities of Lie applicable surfaces, Manuscripta Mathematica, Volume 158 (2019) no. 3-4, pp. 505-546 | DOI:10.1007/s00229-018-1033-0 | Zbl:1412.53021
- Discrete linear Weingarten surfaces, Nagoya Mathematical Journal, Volume 231 (2018), pp. 55-88 | DOI:10.1017/nmj.2017.11 | Zbl:1411.53007
- Minimal Darboux transformations, Beiträge zur Algebra und Geometrie, Volume 58 (2017) no. 1, pp. 81-91 | DOI:10.1007/s13366-016-0301-y | Zbl:1361.53011
- A connection between flat fronts in hyperbolic space and minimal surfaces in Euclidean space, Annals of Global Analysis and Geometry, Volume 48 (2015) no. 3, pp. 233-254 | DOI:10.1007/s10455-015-9468-y | Zbl:1405.53017
- Discrete constant mean curvature nets in space forms: Steiner's formula and Christoffel duality, Discrete Computational Geometry, Volume 52 (2014) no. 4, pp. 612-629 | DOI:10.1007/s00454-014-9622-5 | Zbl:1312.53011
- Lie geometry of linear Weingarten surfaces, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 350 (2012) no. 7-8, pp. 413-416 | DOI:10.1016/j.crma.2012.03.018 | Zbl:1252.53018
Cité par 10 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier