We generalize the theorem of E. Cattani, P. Deligne, and A. Kaplan to admissible variations of mixed Hodge structure.
On généralise le théorème de E. Cattani, P. Deligne, et A. Kaplan aux variations de structure de Hodge mixtes admissibles.
Accepted:
Published online:
Patrick Brosnan 1; Gregory Pearlstein 2; Christian Schnell 3
@article{CRMATH_2010__348_11-12_657_0, author = {Patrick Brosnan and Gregory Pearlstein and Christian Schnell}, title = {The locus of {Hodge} classes in an admissible variation of mixed {Hodge} structure}, journal = {Comptes Rendus. Math\'ematique}, pages = {657--660}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.002}, language = {en}, }
TY - JOUR AU - Patrick Brosnan AU - Gregory Pearlstein AU - Christian Schnell TI - The locus of Hodge classes in an admissible variation of mixed Hodge structure JO - Comptes Rendus. Mathématique PY - 2010 SP - 657 EP - 660 VL - 348 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2010.04.002 LA - en ID - CRMATH_2010__348_11-12_657_0 ER -
%0 Journal Article %A Patrick Brosnan %A Gregory Pearlstein %A Christian Schnell %T The locus of Hodge classes in an admissible variation of mixed Hodge structure %J Comptes Rendus. Mathématique %D 2010 %P 657-660 %V 348 %N 11-12 %I Elsevier %R 10.1016/j.crma.2010.04.002 %G en %F CRMATH_2010__348_11-12_657_0
Patrick Brosnan; Gregory Pearlstein; Christian Schnell. The locus of Hodge classes in an admissible variation of mixed Hodge structure. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 657-660. doi : 10.1016/j.crma.2010.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.002/
[1] On the algebraicity of the zero locus of an admissible normal function, 2009 | arXiv
[2] On the locus of Hodge classes, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 483-506
[3] Bimeromorphic smoothing of a complex-analytic space, Acta Math. Vietnam., Volume 2 (1977) no. 2, pp. 103-168
[4] A study of variation of mixed Hodge structure, Publ. Res. Inst. Math. Sci., Volume 22 (1986) no. 5, pp. 991-1024
[5] -orbit theorem for degeneration of mixed Hodge structure, J. Algebraic Geom., Volume 17 (2008) no. 3, pp. 401-479
[6] Moduli of log mixed Hodge structures, 2009 http://arXiv.org/abs/0910.4454
[7] Admissible normal functions, J. Algebraic Geom., Volume 5 (1996) no. 2, pp. 235-276
[8] Arithmetic mixed sheaves, Invent. Math., Volume 144 (2001) no. 3, pp. 533-569
[9] Complex-analytic Neron models for arbitrary families of intermediate Jacobians, 2009 http://arXiv.org/abs/0910.0662
[10] Variation of mixed Hodge structure. I, Invent. Math., Volume 80 (1985) no. 3, pp. 489-542
Cited by Sources:
Comments - Policy