[Un modèle de domaine fictif pour le problème de Stokes/Brinkman avec des conditions de saut immergées]
Nous présentons l'analyse d'une nouvelle méthode de domaine fictif pour des problèmes de Brinkman ou de Stokes/Brinkman permettant de traîter des conditions de sauts (J.E.B.C.) immergées générales. Notre modèle est basé sur des conditions de transmission algébriques combinant les sauts des vecteurs contrainte et vitesse sur l'interface Σ séparant deux sous-domaines. Elles sont bien choisies de façon à guarantir la coercivité de l'opérateur et issues de la généralisation à des problèmes elliptiques vectoriels d'un modèle établi dans le cas scalaire (Angot (2003, 2005) [2,3]). On prouve tout d'abord que le modèle proposé est globalement bien posé dans tout le domaine fictif et on en identifie certains sous-modèles. Une classe de méthodes est ensuite proposée dans la même formulation unifiée qui permet d'obtenir des conditions aux limites variées, comme par exemple une contrainte donnée de type Neumann ou Fourier ou une vitesse imposée sur la frontière immergée. En particulier, nous prouvons la consistance de la méthode E.B.C. pour une condition de traction imposée qui inclue la condition usuelle de sortie ouverte de l'écoulement.
We present and analyze a new fictitious domain model for the Brinkman or Stokes/Brinkman problems in order to handle general jump embedded boundary conditions (J.E.B.C.) on an immersed interface. Our model is based on algebraic transmission conditions combining the stress and velocity jumps on the interface Σ separating two subdomains: they are well chosen to get the coercivity of the operator. It is issued from a generalization to vector elliptic problems of a previous model stated for scalar problems with jump boundary conditions (Angot (2003, 2005) [2,3]). The proposed model is first proved to be well-posed in the whole fictitious domain and some sub-models are identified. A family of fictitious domain methods can be then derived within the same unified formulation which provides various interface or boundary conditions, e.g. a given stress of Neumann or Fourier type or a velocity Dirichlet condition. In particular, we prove the consistency of the given-traction E.B.C. method including the so-called do nothing outflow boundary condition.
Accepté le :
Publié le :
Philippe Angot 1
@article{CRMATH_2010__348_11-12_697_0, author = {Philippe Angot}, title = {A fictitious domain model for the {Stokes/Brinkman} problem with jump embedded boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {697--702}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.022}, language = {en}, }
TY - JOUR AU - Philippe Angot TI - A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions JO - Comptes Rendus. Mathématique PY - 2010 SP - 697 EP - 702 VL - 348 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2010.04.022 LA - en ID - CRMATH_2010__348_11-12_697_0 ER -
Philippe Angot. A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 697-702. doi : 10.1016/j.crma.2010.04.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.022/
[1] Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Meth. Appl. Sci. (
[2] A model of fracture for elliptic problems with flux and solution jumps, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 6, pp. 425-430
[3] A unified fictitious domain model for general embedded boundary conditions, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005) no. 11, pp. 683-688
[4] Ph. Angot, On the well-posed coupling between free fluid and porous viscous flows, Appl. Math. Lett., in press
[5] A penalization method to take into account obstacles in incompressible viscous flows, Nümer. Math., Volume 81 (1999) no. 4, pp. 497-520
[6] Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques & Applications, vol. 52, Springer-Verlag, 2006
[7] Finite Element Methods for the Navier–Stokes Equations, Springer Series in Comput. Math., vol. 5, Springer-Verlag, 1986 (1st edn. 1979)
[8] A boundary multiplier/fictitious domain method for the steady incompressible Navier–Stokes equations, Nümer. Math., Volume 88 (2001) no. 1, pp. 75-103
[9] Fictitious domain approach for numerical modelling of Navier–Stokes equations, Int. J. Numer. Meth. Fluids, Volume 34 (2000) no. 8, pp. 651-684
[10] Linear and Quasilinear Elliptic Equations, Math. in Sci. and Engrg., vol. 46, Academic Press, New York, 1968
[11] An immersed interface method for incompressible Navier–Stokes equations, SIAM J. Sci. Comput., Volume 25 (2003) no. 3, pp. 832-856
[12] The immersed interface method for the Navier–Stokes equations with singular sources, J. Comput. Phys., Volume 171 (2001), pp. 822-842
[13] Problèmes aux limites dans les équations aux dérivées partielles, Presses de l'Université de Montréal, 1965
[14] Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967
[15] The immersed boundary method, Acta Numer. (2002), pp. 479-517
[16] A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. Meth. Appl. Mech. Engrg., Volume 196 (2007) no. 4–6, pp. 766-781
[17] A general fictitious domain method with immersed jumps and multilevel nested structured meshes, J. Comput. Phys., Volume 225 (2007) no. 2, pp. 1347-1387
[18] Navier–Stokes Equations; Theory and Numerical Analysis, North-Holland, 1986 (1st edn. 1977)
- Reconstruction of flow domain boundaries from velocity data via multi-step optimization of distributed resistance, Computers Mathematics with Applications, Volume 129 (2023), p. 11 | DOI:10.1016/j.camwa.2022.11.006
- Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 6 | DOI:10.1007/s00526-022-02279-4
- The Beavers–Joseph Interface Boundary Condition is Well Approximated by the Beavers–Joseph–Saffman–Jones Interface Boundary Condition, SIAM Journal on Applied Mathematics, Volume 82 (2022) no. 3, p. 1020 | DOI:10.1137/21m1462386
- A nonlinear asymptotic model for the inertial flow at a fluid-porous interface, Advances in Water Resources, Volume 149 (2021), p. 103798 | DOI:10.1016/j.advwatres.2020.103798
- A Banach space mixed formulation for the unsteady Brinkman–Forchheimer equations, IMA Journal of Numerical Analysis, Volume 41 (2021) no. 4, p. 2708 | DOI:10.1093/imanum/draa035
- Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coefficient, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 12, p. 9641 | DOI:10.1002/mma.7167
- Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 5, p. 1875 | DOI:10.1051/m2an/2017060
- A moving boundary flux stabilization method for Cartesian cut-cell grids using directional operator splitting, Journal of Computational Physics, Volume 368 (2018), p. 333 | DOI:10.1016/j.jcp.2018.04.048
- The fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition, Japan Journal of Industrial and Applied Mathematics, Volume 34 (2017) no. 2, p. 585 | DOI:10.1007/s13160-017-0255-y
- Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions, Physical Review E, Volume 95 (2017) no. 6 | DOI:10.1103/physreve.95.063302
- Asymptotic study for Stokes–Brinkman model with jump embedded transmission conditions, Asymptotic Analysis, Volume 96 (2016) no. 3-4, p. 223 | DOI:10.3233/asy-151336
- A Fourier penalty method for solving the time-dependent Maxwell's equations in domains with curved boundaries, Journal of Computational Physics, Volume 306 (2016), p. 167 | DOI:10.1016/j.jcp.2015.11.031
- Modeling and Simulation of Filtration Processes, Currents in Industrial Mathematics (2015), p. 163 | DOI:10.1007/978-3-662-48258-2_7
- A Sharp-Interface Active Penalty Method for the Incompressible Navier–Stokes Equations, Journal of Scientific Computing, Volume 62 (2015) no. 1, p. 53 | DOI:10.1007/s10915-014-9849-6
- Modellierung und Simulation von Filtrationsprozessen, Mathematik im Fraunhofer-Institut (2015), p. 167 | DOI:10.1007/978-3-662-44877-9_7
- Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 48 (2014) no. 3, p. 859 | DOI:10.1051/m2an/2013123
- A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier–Stokes problems, Applied Mathematics Letters, Volume 25 (2012) no. 11, p. 1681 | DOI:10.1016/j.aml.2012.01.037
- On the well-posed coupling between free fluid and porous viscous flows, Applied Mathematics Letters, Volume 24 (2011) no. 6, p. 803 | DOI:10.1016/j.aml.2010.07.008
Cité par 18 documents. Sources : Crossref
Commentaires - Politique