Comptes Rendus
Mathematical Problems in Mechanics/Partial Differential Equations
A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions
[Un modèle de domaine fictif pour le problème de Stokes/Brinkman avec des conditions de saut immergées]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 697-702.

Nous présentons l'analyse d'une nouvelle méthode de domaine fictif pour des problèmes de Brinkman ou de Stokes/Brinkman permettant de traîter des conditions de sauts (J.E.B.C.) immergées générales. Notre modèle est basé sur des conditions de transmission algébriques combinant les sauts des vecteurs contrainte et vitesse sur l'interface Σ séparant deux sous-domaines. Elles sont bien choisies de façon à guarantir la coercivité de l'opérateur et issues de la généralisation à des problèmes elliptiques vectoriels d'un modèle établi dans le cas scalaire (Angot (2003, 2005) [2,3]). On prouve tout d'abord que le modèle proposé est globalement bien posé dans tout le domaine fictif et on en identifie certains sous-modèles. Une classe de méthodes est ensuite proposée dans la même formulation unifiée qui permet d'obtenir des conditions aux limites variées, comme par exemple une contrainte donnée de type Neumann ou Fourier ou une vitesse imposée sur la frontière immergée. En particulier, nous prouvons la consistance de la méthode E.B.C. pour une condition de traction imposée qui inclue la condition usuelle de sortie ouverte de l'écoulement.

We present and analyze a new fictitious domain model for the Brinkman or Stokes/Brinkman problems in order to handle general jump embedded boundary conditions (J.E.B.C.) on an immersed interface. Our model is based on algebraic transmission conditions combining the stress and velocity jumps on the interface Σ separating two subdomains: they are well chosen to get the coercivity of the operator. It is issued from a generalization to vector elliptic problems of a previous model stated for scalar problems with jump boundary conditions (Angot (2003, 2005) [2,3]). The proposed model is first proved to be well-posed in the whole fictitious domain and some sub-models are identified. A family of fictitious domain methods can be then derived within the same unified formulation which provides various interface or boundary conditions, e.g. a given stress of Neumann or Fourier type or a velocity Dirichlet condition. In particular, we prove the consistency of the given-traction E.B.C. method including the so-called do nothing outflow boundary condition.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.04.022

Philippe Angot 1

1 Université de Provence & LATP – CMI, UMR CNRS 6632, 39, rue F. Joliot Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2010__348_11-12_697_0,
     author = {Philippe Angot},
     title = {A fictitious domain model for the {Stokes/Brinkman} problem with jump embedded boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {697--702},
     publisher = {Elsevier},
     volume = {348},
     number = {11-12},
     year = {2010},
     doi = {10.1016/j.crma.2010.04.022},
     language = {en},
}
TY  - JOUR
AU  - Philippe Angot
TI  - A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 697
EP  - 702
VL  - 348
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2010.04.022
LA  - en
ID  - CRMATH_2010__348_11-12_697_0
ER  - 
%0 Journal Article
%A Philippe Angot
%T A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions
%J Comptes Rendus. Mathématique
%D 2010
%P 697-702
%V 348
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2010.04.022
%G en
%F CRMATH_2010__348_11-12_697_0
Philippe Angot. A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 697-702. doi : 10.1016/j.crma.2010.04.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.022/

[1] Ph. Angot Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Meth. Appl. Sci. (M2AS), Volume 22 (1999) no. 16, pp. 1395-1412

[2] Ph. Angot A model of fracture for elliptic problems with flux and solution jumps, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 6, pp. 425-430

[3] Ph. Angot A unified fictitious domain model for general embedded boundary conditions, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005) no. 11, pp. 683-688

[4] Ph. Angot, On the well-posed coupling between free fluid and porous viscous flows, Appl. Math. Lett., in press

[5] Ph. Angot; C.-H. Bruneau; P. Fabrie A penalization method to take into account obstacles in incompressible viscous flows, Nümer. Math., Volume 81 (1999) no. 4, pp. 497-520

[6] F. Boyer; P. Fabrie Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques & Applications, vol. 52, Springer-Verlag, 2006

[7] V. Girault; P.A. Raviart Finite Element Methods for the Navier–Stokes Equations, Springer Series in Comput. Math., vol. 5, Springer-Verlag, 1986 (1st edn. 1979)

[8] V. Girault; R. Glowinski; H. Lopez; J.P. Vila A boundary multiplier/fictitious domain method for the steady incompressible Navier–Stokes equations, Nümer. Math., Volume 88 (2001) no. 1, pp. 75-103

[9] K. Khadra; Ph. Angot; S. Parneix; J.-P. Caltagirone Fictitious domain approach for numerical modelling of Navier–Stokes equations, Int. J. Numer. Meth. Fluids, Volume 34 (2000) no. 8, pp. 651-684

[10] O.A. Ladyzhenskaya; N.N. Ural'tseva Linear and Quasilinear Elliptic Equations, Math. in Sci. and Engrg., vol. 46, Academic Press, New York, 1968

[11] L. Lee; R.J. LeVeque An immersed interface method for incompressible Navier–Stokes equations, SIAM J. Sci. Comput., Volume 25 (2003) no. 3, pp. 832-856

[12] Z. Li; M.-C. Lai The immersed interface method for the Navier–Stokes equations with singular sources, J. Comput. Phys., Volume 171 (2001), pp. 822-842

[13] J.-L. Lions Problèmes aux limites dans les équations aux dérivées partielles, Presses de l'Université de Montréal, 1965

[14] J. Nečas Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967

[15] C.S. Peskin The immersed boundary method, Acta Numer. (2002), pp. 479-517

[16] I. Ramière; Ph. Angot; M. Belliard A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. Meth. Appl. Mech. Engrg., Volume 196 (2007) no. 4–6, pp. 766-781

[17] I. Ramière; Ph. Angot; M. Belliard A general fictitious domain method with immersed jumps and multilevel nested structured meshes, J. Comput. Phys., Volume 225 (2007) no. 2, pp. 1347-1387

[18] R. Temam Navier–Stokes Equations; Theory and Numerical Analysis, North-Holland, 1986 (1st edn. 1977)

Cité par Sources :

Commentaires - Politique